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X rotor inflow ratio; Langrangian multiplier;
Poincare exponent

H rotor inflow ratio with respect to the hub
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A characteristic multiplier
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respect to the inertial frame

rotor rotational speed

0 partial derivative operator

* SUBSCRIPTS

The following subscripts denote components expressed in

terms of various frames of reference.

b blade

B airframe
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P blade flapping

C blade lagging

co, ccZ Fourier coefficients

1.2 intermediate reference frames
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b terms seen by an observer in the blade axis
system

I terms seen by an observer in the inertial
reference frame

T transpose of a matrix

(o) time derivative

(o) derivative with respect to the blade azimuth
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Abstract

The flap-lag equations of motion of an isolated rotor

blade and those for a rigid helicopter containing four blades

free to flap and lag are derived. Control techniques are

developed which stabilize both systems for a variety of

flight conditions.

Floquet theory is used to investigate the stability of a

rotor blade's flap-lag motion. A modal control technique,

based on Floquet theory, is used to eliminate the blade's

instabilities using existing collective and cyclic pitch

control mechanisms. The technique shifts the unstable roots

to desired locations while leaving the other roots unaltered.

The control, developed for a single design point, is shown to

significantly reduce or eliminate regions of flap-lag

instabilities for a variety of off-design conditions. Both

scalar and vector control are successfully used to stabilize

the blade's motion.

Coupling the flap-lag equations of motion of four rotor

blades to a rigid airframe alters the flap, lag, and airframe

* roots. The airframe roots are stabilized using a combination

of the body's pitch attitude and pitch rate feedback to the
| L

main rotor's longitudinal cyclic pitch. The modal control

technique is used to eliminate multiple blade instabilities

by first controlling a pair of unstable roots at a specific

design point. The resulting closed loop system is a new

xix

IA



* linear system with periodic coefficients. Another modal

) controller is designed for this new system to shift a second

pair of unstable roots to desired locations. This process is

repeated until all instabilities are eliminated. Numerical

inaccuracies, however, become noticeable when modal control

is used more than once.
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TIME PERIODIC CONTROL OF A MULTI-BLADE HELICOPTER

I. Introduction

A helicopter in a mechanically complex aircraft whose

stability and control characteristics are often marginal

unless a reliable automatic control system is used.

Effective modeling of dynamic effects is crucial to the safe

design of a successful helicopter. It is, therefore,

essential to consider the basic dynamic behavior of

helicopters so that potential instabilities can be simulated

and eliminated in the design process. However, the dynamics

of a helicopter in hover and in forward flight involve the

coupled motions of the rotor blades and the fuselage. It is

convenient to analyze and understand the helicopter rotor

blade and fuselage dynamics separately before their coupling

is examined.

Rotor Blade Dynamics

Many researchers have examined the stability of an

isolated rotor blade in hover and in forward flight. The

helicopter blade can be modeled as a rigid body rotation

about the blade root, which is attached to the rotor hub

11;2). The blade has three degrees of freedom: flap; lag;



'?

i blads #

rotor shaft

Figure 1. Blade Motion

* Oand pitch (or feather) rotations about hinges at the blade

root (see Figure 1). Note that, in the figure, C is the

rotor's rotational speed while f3 is the blade flap angle and

is positive for upward motion of the blade. The blade lag

angle, ( is positive when it is opposite the direction of

the rotor blade's rotation, and e, the blade pitch angle, is

the feathering otion produced by rotating the blade about a

hinge at the root and is positive for nose-up blade rotation.

The blades on a helicopter are maintained in uniform

rotational motion, where the rotation direction is assumed to

be counterclockwise as seen from above.

Two fundamental types of mathematical models are used to

describe the flap and lag otion of a blade. The first model

consists of a hinged, spring-restrained, rigid blade. Hinges

at the blade root allow free motion of the blade both

perpendicular to and in the plane of rotation. A schematic

of the hinge arrangement is shown in Figure 2.

A flapping hinge alleviates the root stresses and hub

moments by permitting blade motion out of the disk plane.

2
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Lag Hinge

Hub '/ Flap Hinge

Hub
_,,Pitch Bearing

Feathering

Rotor
Shaft

Rotor

Blade

To Control
System

Figure 2. Rotor Hinge Arrangement (2:7)

However, this flapping motion introduces aerodynamic and

inertial forces in the disk plane, so a lag hinge is

introduced to reduce chordwise root loads by allowing

in-plane motion. A pitch, or feathering, hinge is also

required to control the rotor by changing the blade's angle

of attack. On a hinged blade, the pitch hinge is usually

outboard of the flap and lag hinges (Figure 2). Motion about

the flap and lag hinges is restrained by centrifugal forces,

while the control system restrains motion about the pitch

hinge (2).

The second model describing blade motion, applied to

hingeless rotors, treats the blade as an elastic beam. The

blade is attached to the rotor hub without flap or lag

hinges, though there are often hinges for the feathering

motion. The blade is attached to the rotor hub by a

3



cantilever root restraint, and blade motion occurs through

bending at the root. The structural stiffness is small

compared to the centrifugal stiffening of the blade; hence,

the fundamental structural mode shape is not too different

from the flapping motion of a hinged, rigid blade.

Therefore, the remainder of this study deals with the motion

of a hinged, rigid blade.

The basic derivation of a helicopter blade's equations

of motion has been well documented (1-5). The simplest model

considers an isolated rotor blade's flap dynamics in hover

and in forward flight. Flapping instabilities at moderate to

high advance ratios have been extensively examined using this
,%

.5

model (6-10). Sissingh and Kuczyncki (11). as well as

Hohenemser and Prelewicz (12), extended their investigations
0

of flapping instabilities to include the effect of the blade

torsional degree of freedom on the rotor's stability

boundaries and response characteristics.

Various procedures have been incorporated to analyze an

isolated rotor blade's equations of motion and obtain the

rotor's flapping stability limits. Some of these methods

have included: generating time history responses by analog

or digital integration of the equations of motion (8;9;11);

analytically solving the system's equations of motion by the

rectangular ripple method (10); and modeling the helicopter

blade as a linear system with periodically varying

coefficients and using Floquet theory to determine the

system's characteristic exponents (7). Hohenemser and

4
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Prelewicz (12) discovered that a simple system identification

method applying a linear sequential estimator could be uaed
0

to solve the transient responses in the flap-bending and

torsion of a rotor blade. Even with these varying methods of

solution, all of the studies indicated flap instabilities at

high advance ratios and therefore considered the effects of

reversed flow.

To examine a rotor blade's stability at more realistic
#

advance ratios, investigations have also been extended to

include analyzing the blade's coupled flap-lag motion

(13-22). Friedmann and Silverthorn (13) examined the

flap-lag motion of a cantilevered rotor blade at arbitrary

d, advance ratios. They concluded that instabilities predicted

by flap only models could be inaccurate due to the neglected

lag degree of freedom and that coupled flap-lag instabilities

occurred at lower values of the advance ratios than when only

the flap degree of freedom was considered. Peters (15)

investigated the flap-lag stability of hinged rigid blades In

forward flight and concluded that flap-lag stability was very

sensitive to the moment trim and propulsive trim conditions

placed on the rotor. Further, for advance ratios between

0.10 and 0.50, excluding periodic coefficients and using

constant coefficient equations of motion resulted in

erroneous flap-lag stability predictions. Kaza and Kvaternik

(16) examined the stability of a hinged blade in hover and in

forward flight for both flap-lag and lag-flap hinge

sequences. These authors discovered that the form of the

5
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coupling terms in the helicopter blade's equations of motion

depended on the hinge sequence used which, consequently,

influenced the blade's stability. Finally, studies (2;15)

reported that the effect of the reversed flow region was

negligible for advance ratios less than 0.50.

An improved model of a helicopter blade is the

introduction of a third degree of freedom, torsional motion

(which is also known as feathering rotation). Again, studies

have examined the stability of coupled flap-lag-torsion

motion on hinged rotors (23-26). Panda and Chopra (26)

investigated the effects of flap bending, lag bending, and

torsion on the stability of an isolated blade in forward

flight. They found that raising the blade's torsional

stiffness increased lag mode damping at lower forward speeds

(advance ratios less than 0.30) and decreased lag mode

damping at higher forward speeds. Consequently, stability

margins predicted from flap-lag studies may be lower than

flap-lag-torsional analyses.

Calculating the stability regions of both the flap-lag

motion and the flap-lag-torsion motion of a helicopter blade

have been accomplished with various procedures. Several

studies have linearized the equations of motion about a

periodic equilibrium position to obtain a system of linear

ordinary differential equations with periodic coefficients

and used Floquet theory to determine the system's stability

(13;15;16;25;27). Kaza and Kvaternik (16) analyzed rotor

flap-lag instabilities by transforming the blade's equations

6
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of motion to a nonrotating, space-fixed coordinate system and

time averaging the equations' periodic coefficients to obtain

an approximate system of linear equations with constant

coefficients. Crimi (21) extended Hill's method to solve a

system of second order linear differential equations with0
periodic coefficients. This method yielded a set of complex

exponents, in Floquet's form, as an initial value solution,

and provided a quantitative measure of the system's

stability. Quasi-linearization was utilized by Panda and

Chopra (26) to solve the nonlinear equations of motion with

an iterative procedure based on Floquet theory. This type of

*solution contained all the harmonics for flap, lag and

torsion response amplitudes. Finally, harmonic balancing was

used (15) to calculate a blade's steady-state response by

* assuming the response was periodic and consisted of a sum of

a finite number of harmonics. This procedure, however, could

become quite involved for coupled systems with

nonlinearities. Frequently, though, accurate solutions were

obtained when the harmonic balance method was restricted to

only zero and first order harmonics.

Friedmann (27) provided an excellent review of the

aeroelastic stability and response problems associated with

isolated rotor blades and coupled rotor/fuselage systems in

hover and in forward flight. He summarized the stability

analyses of coupled flap-lag and coupled flap-lag-torsion

motions of blades, and discussed the importance of trim and

nonlinear terms on blade stability. Further, he reviewed the

7
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coupled rotor/fuselage aeroelastic problem and noted that

helicopter stability analyses have basically been restricted

to single blade or isolated blade aeroelastic problems.

Friedmann noted that interblade mechanical couplings or

couplings between the rotor and the fuselage could have

significant effects on a helicopter's dynamic stability.

Coupled Rotor/Fuselage Dynamics

To study the stability characteristics of a coupled

rotor/fuselage system a simple, yet accurate, mathematical

model is required. Indeed, this area of study has been

addressed; several authors (1;2;5) provided a brief

introduction to developing the equations of motion of the

entire helicopter, to include both the rotors and the

airframe. Bousman (28) obtained experimental data on the

stability of a hingeless rotor mounted on a special gimbaled

support which simulated body pitch and roll degrees of

freedom. He then compared this data with theoretical results

he had obtained from an analytical model. Other studies

(29-38) have introduced analytical models to examine coupled

rotor/fuselage dynamics. Further, a detailed description of

the procedure followed to obtain a set of rotor/fuselage

equations of motion was accomplished by Venkatesan and

Friedmann (39). These authors presented a set of governing

coupled differential equations for a model representing a

Hybrid Heavy Lift Helicopter, which used a multiple rotor

e V



system for its operation. They subsequently reduced these

equations to a single rotor model and obtained a simplified

system of coupled rotor/fuselage equations which produced

results agreeing favorably with experimental data (40). The

model included a rotor with three or more hinged, rigid

blades and, in deriving the system's equations of motion,

neglected terms second order and higher.

Solving the equations of motion to determine the@

stability regions of a coupled rotor/fuselage system can be

accomplished with many of the methods used for the isolated

blade cases. Because the equations are so complex, industry

has developed a number of complex analyses and have

implemented them in sophisticated computer programs

(27;35;36). It is possible, however, to simplify the coupled

rotor/fuselage equations of motion so that relatively

uncomplicated procedures can be used to determine the sytem's

stability (31;32;34;37). For example, Straub and Warmbrodt

(31) and Straub (37) converted linearized perturbation

equations with periodic coefficients into a constant

coefficient system using a Fourier coordinate transformation

so the system's stability could be evaluated by performing an

eigenvalue analysis.

Helicopter Control

Rather than Just documenting where the instabilities of

an isolated rotor blade or a coupled rotor/fuselage system

9
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will occur, it would be desirable to actually reduce or

eliminate those instabilities.

For example, Peters and Hohenemger (7) used Floquet

theory to establish the stability of a rotor blade's flapping

equations of motion with 6 (pitch-flap coupling angle; it is0 9

positive if the pitch is decreased when the blade flaps up)

and tilt-moment feedback. They found that adding the

feedback to the linearized equations delayed the onset of0
instabilities. After linearizing an isolated rotor blade's

flap-lag equations of motion. Johnson and Hohenemser (22)

described a rotor thrust or tilting moment feedback control

system which essentially eliminated the blade's first order

flapping harmonics. Even though the system did not eliminate

higher blade flap bending harmonics, it did minimize the
S

chordwise and flapwise blade motions. Similarly, Gaffey (17)

concluded that negative 6 feedback eliminated flap-lag blade
9

motion instabilities since it separated the flap and lag

natural frequencies. However, this also introduced the

possibility of a flapping divergence. Further, Gaffey

discovered that the effect of negative 6 on pitch-lag

instabilities was stabilizing.

Rotor blade control has also been accomplished by

designing the blade as an elliptically-shaped circulation

controlled airfoil with a simple cyclic control mechanism

based on blade pressure variation rather than blade pitch

variation (24). A thin Jet of air blown from a spanwise slot

along the blade's rounded trailing edge controlled blade lift

10



(23). This model delayed the onset of flap-lag-torsion

instabilities without any moving parts other than the

rotating blades.

Ouinn's (41) rotor control design placed the control

actuators, power supplies and computers in the rotating

control system. Referred to as an *Individual Blade Control

Independent of a Swashplate" (IBIS). this system consisted of

four single actuators per blade, each controlled by a

different power supply located at the rotor hub. Four

computers, also located at the hub, processed the control

data. Guinn claimed advantages in reliability, drag, weight,

and cost over conventional swashplate control system.

As for controlling coupled rotor/fuselage motion,

Miyajimi (29) developed a stability and control augmentation

system whereby the helicopter was represented by a six-degree

of freedom rigid body (excluding the rotors) with constant

factors used as weightings for the state and control

variables. A least squares design method was applied to

determine the control augmentation system. Then, blade

flapping motion was included using the method of multiblade

coordinates, and linear optimal control theory was applied to

determine the appropriate feedback gains for the stability

augmentation system.

Straub and Warmbrodt (31). after approximating the

coupled rotor/fuselage equations of motion with constant

coefficients, used state variable feedback with appropriate

closed-loop feedback phase and gain margins. They then

1I

K



8%

described the use of active blade pitch control to increase

helicopter rotor/fuselage damping by showing that active

control through a conventional swashplate increased damping

levels and eliminated ground resonance instabilities for a

I. wide variety of rotor configurations. Straub (37) extended

these results by applying multivariable optimal control

techniques to control aeromechanical stability at all rotor

speeds.

The feedback controllers described above typically

adjusted damping levels to delay or eliminate instabilities.

In addition, the equations of motion were usually modeled as

linear systems with constant coefficients.

Recently. active control of helicopter blade flapping

has been accomplished using Floquet theory to allow pole

placement in linear periodic systems (42;43). This method

works directly with the time periodic linear equations and

alters the unstable eigenvalues of the periodic system while

leaving the others unchanged. Calico and March (42) applied

this modal control technique to control the flapping motion

of a single helicopter blade by using a flap torque actuator
I

at the blade root. However. actually implementing this

actuator would increase the rotor's cost. complexity,Imaintenance, weight. and hub drag (31:13-14). Hence, Calico

and Wiesel (43) implemented a pole-placement type of control

system by using the collective and cyclic pitch controls on a

conventional swashplate. In addition, they extended their

analysis to include two blades and examined the blades'

12
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flapping stability throughout the flight regime. Their

controller did indeed eliminate the flapping instabilities of

one and two helicopter blades at high advance ratios.

Although both studies (42;43) dealt only with blade flapping

instabilities at high advance ratios, the technique utilized

is directly applicable to controlling the instabilities of

more complex helicopter models.

Implementing the modal control technique has several

advantages over previous attempts to reduce or eliminate

blade (17;22;23) and rotor/fuselage (31;37;44) instabilities.

For example, thrust, 6 or tilt feedback control is no

longer required, and conventional swashplates can be used in

the control system. The linear periodic system is not

approximated by a constant coefficient system in order to

apply state feedback control. Consequently, active control

of blade and rotor/fuselage motion using collective and

cyclic pitch mechanisms to eliminate the system's unstable

modes could possibly enhance a helicopter's stability.

Problem Statement

This research effort is intended to demonstrate a

control technique which does indeed improve a helicopter's

stability. As previously mentioned, the modal control

technique effectively eliminated an isolated rotor blade's

flapping instabilities using existing control mechanisms.

Successfully demonstrating this technique on more

13
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sophisticated helicopter models would therefore serve two

'purposes: a helicopter's stability could indeed be improved

using modal control; and the modal control technique would be

validated on more realistic systems.

The first step in pursuing this course of research is to

extend the isolated helicopter blade model from considering

only flapping motions (42;43) to considering both flapping

and lagging motions. Including flap-lag motion introduces

not only another degree of freedom to the equations of motion

but also adds coupling terms to those equations. This more

realistic model has been shown to demonstrate a rotor blade's

instability at lower advance ratios than the simple flap

model. These lower advance ratios may easily fall within the

performance envelope of a helicopter. Finally, extending the

modal control technique to controlling blade flap-lag motion

will demonstrate this theory on a more sophisticated model.

The control of a helicopter's coupled rotor and

longitudinal fuselage motion will then be considered. The

blade will again be modeled as rigid and will have both flap

and lag degrees of freedom. Demonstrating that the modal

control technique eliminates instabilities in the coupled

rotor/fuselage dynamics will indeed improve a helicopter's

stability in a reliable and efficient manner.

In summary, the purpose of this research program is

twofold. First, the equations of motion for a helicopter

blade's flap-lag dynamics will be developed. The blade's

stability in hover and in forward flight will be examined

14
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using Floquet theory, and the results compared to previous

studies. The pole placement technique will then be used to

actively control the stability of the helicopter blade in

forward flight using existing collective and cyclic pitch

control mechanisms.
6

Once an isolated rotor blade's stability has been

investigated, the equations of motion for the coupled

rotor/fuselage dynamics will be derived. Using Floquet

theory, the stability of the coupled rotor/fuselage system

will be examined. Finally, control of the system will be

accomplished with the pole placement technique, as well as

standard feedback control mechanisms.

The development of the blade flap-lag equations of

motion is discussed in Chapter II while Chapter III

highlights the derivation of the coupled rotor/fuselage

equations of motion. The control technique used to eliminate

the helicopter's unstable regions is reviewed in Chapter IV.

The results of controlling the blade flap-lag motion is

presented in Chapter V, while Chapter VI containa the results

of controlling the helicopter's coupled rotor/fuselage

motion. Finally, a number of conclusions concerning the

results obtained are presented in Chapter VII.

15



II. Flap-Lag Stability of Helicopter Rotor Blades

Deriving a helicopter's equations of motion and

conducting a stability analysis on the system is a

challenging venture. The complexity of the helicopter, as

well as the rotor, requires using assumptions and

*• approximations which simplify the equations of motion and

make them more manageable. However, care must be taken to

avoid oversimplifying the problem to the exclusion of

important effects.

A logical starting point, in a stability analysis, is to

derive the equations of motion of a single rotor blade in

* forward flight and then examine the rotor's stability

characteristics. The more complex task of deriving the

equations of motion of the entire helicopter may then be

*• undertaken once this is accomplished.

The examination of the stability of an isolated

helicopter rotor blade is based on a system of equations of

motion for a rigid blade. The blade is centrally hinged and

free to both flap and lag. The assumptions and approach used

are summarized below.

Blade Dynamics

An analysis of the various forces and moments acting on

N -
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Figure 3. Blade Reference Frames
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Figure 4. Hinge Geometry

a helicopter rotor in forward flight may be conducted in

several different coordinate systems. Three of these

I - reference frames are quite useful in relating blade motion to

the aerodynamic forces and moments (refer to Figures 3 and
-4,

4). The frame F is assumed to be attached to the hub but is
I

. not rotating with it. The Z axis is along the hub, and X and

4.
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Y form a dextral set with Z. The X axis is along the

helicopter's velocity vector when it is in forward flight.

In deriving the equations of motion for an isolated rotor

blade, it is assumed that this frame at most translates with

uniform velocity relative to a fixed space. Hence, F I can be

considered to be an inertial system.

Frame Fh is also attached to the hub but rotates with W

the blade azimuth rate. The z axis is coincident with the Z

axis, and the x axis, which lies in the X-Y plane, is in the

direction of the rotor blade. The y axis is defined so as to

yield a dextral set.

The final reference frame, Fb, is a blade-fixed frame

with the x axis coincident with the blade feathering axis.

When considering a blade's flapping and lagging motions it is

necessary to specify the rotation sequence. A flap-lag

rotation is used when the lag hinge is outboard of the flap

hinge [Figure 4(a)] while a lag-flap rotation is used when

the lag hinge is inboard of the flap hinge [Figure 4(b)]

(16:877). In Figure 4(a), frame F is found from F by a 2-3b h

rotation through the angles -(3 and (. On the other hand,

Figure 4(b) indicates that Fb is found from Fh by a 3-2

rotation through the angles C and -(?. In both situations,

the flap and lag hinges are assumed to be coincident and

located at the rotor shaft. The V and a axes form a dextral

set with x.

The equations of motion used in this study are developed

C
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.Figure 5. Free Stream Velocity

assuming a flap-lag hinge sequence (18:877). In addition,

the derivation of the aerodynamic forces is based on linear,

quasi-steady strip theory. The induced inflow is uniform,

and stall and compressibility are not considered.

Figure 5 shows the relationship between the free stream

velocity vector and the inertial coordinate system. The

helicopter's forward velocity has magnitude V at an angle of
4.

attack a to the X-Y, or disk, plane. The rotor induced

velocity, v., is normal to the disk plane, while the advance

ratio p and inflow ratio X are dimensionless velocity

components parallel to and normal to the disk plane,

respectively. These terms are defined as follows (2:25,28):

P i = Vcosa/ (RO) (2.1)

X = (Vsin ot - v.)I(Rfl) (2.2)

t. where R is the blade's length.

Forward flight introduces a phenomena known as reversed

flow. The region of reversed flow is an area on the

4 .retreating side of the hub plane, near the blade root, where

19
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the velocity relative to the blade is directed from the

trailing edge to the leading edge of the blade. This means
S

that in this region the rotational velocity is smaller in

magnitude than the component of the forward speed. and the

flow is reversed (2:152). Sissingh (8:57) documented three

different types of flow regions a blade encounters: normal;

reversed; and mixed flow. However, Johnson (2:152) reported

that, for low advance ratios, the reversed flow region

occupies only a small portion of the rotor disk, and it is

characterized by low dynamic pressure until the advance ratio

becomes large. Since the root cutout typically extends from

15 to 30 percent of the rotor radius, it covers much of the

reversed flow region. Hence, the effects of the reversed

flow region are negligible up to an advance ratio of p = 0.50

(2:152). Because most helicopter forward speeds represent

values of p between 0.30 and 0.40, reversed flow is not

considered when deriving the isolated rotor blade's equations
0

of motion (2:152;16:878).

Since the rotation sequence for the rotor blade is flap

followed by lag, the coordinate transformation relating the

blade-fixed axes x, , to the rotating, hub-fixed axis

system x, y, z is

= Lbl lh] = Lbh y (2.3)

Ab z-h z.

where

20
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- cosC sinC 0 comp 0 sinp
L sin( os L1  0 [1~ 0 53 (2.4)Lb l 0 0 1 1 h - in ? 0 Co glC

and the subscript I denotes an intermediate axis system.

The blade equations of motion are formulated using

4' Lagrange's equations (45:66-76). To this end, the system's

kinetic and potential energies must be calculated.

In the blade-fixed reference frame, the position vector

• of an arbitrary point mass on the blade is simply the

spanwise position of the element:

V.IC{}b 0 (2.5)

V.0

where r is the radial location of a point on the blade.

Assuming a flat and nonrotating earth, the angular

velocity of the blade-fixed axis system with respect to the

inertial system is

-b/I • -
OA~ -1 (4+ bC (2.6)

or, expressed in blade-fixed coordinates,

1 b/ Lbhj + L b l  + j (2.7)

NW

Simplifying Eq (2.7) results in the following:

083c- Re C

fbI
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where sp, = sinf3, cf3 = coa(3, sC = MinC, and cC = cosC.

Now, if a and b are any two vectors in the same dextral

frame, the components of the vector product a x b may be

found from [a]{b}, where

0 -a3 a

[a a10[ a (2.9)
-a2 a 0

In order to determine the system's kinetic energy, the

derivative of the position vector as seen by an observer in

the inertial frame is required. This derivative, expressed

in the blade-fixed axis system, can be written as(45:50):

{}Ib = {b+ [Zb/I]{fp} (2.10)

However, { b}, the derivative of the position vector
b

seen by an observer fixed in the blade-fixed reference frame,

is zero. Hence,

[0
{p'r + [ ocscosti (2.11)

b (tcogC - 0sinj3sinC)

Sb

The kinetic energy of a single blade is given by

T J [{=} {P'})P.dr (2.12)2 11b P b)

where p is the density of the point mass.

The system's potential energy is

22



V = k/(P/2 + k /2 (2.13)

* with k t and k( being the spring rates about the flap and lag

hinges, respectively. Note that the gravity potential is

ignored.

* Since the Lagrangian, L, is defined as L : T - V

solving the expressions for the system's kinetic energy, and

combining this result with the potential energy of the system

* yields the following:

L = 2+econ2C+2(Con2,(?sin 2 inC)

+2O1sin3sin~cosC+20cos] - kd 2 - .k (2.14)

where, assuming a thin blade, the blade's mass moment of

inertia for both flap and lag motions are equal and can be

*approximated as

R

I =jrpdr (2.15)

0

Meirovitch (45:72-76,88-91) derived Lagrange's equations

for a system with both conservative and nonconservative

forces:

d [O L ] i l = k  k = 1,2,....n (2.16)

where qk are generalized coordinates and Qk are generalized,

non-conservative forces.

The generalized forces include both the aerodynamic

C- forces acting on the rotor blade and the forces resulting

23
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from the torsional dampers situated along the hinge line.

Thus,

Q k = -cA- c( (2.17)

where c and c are the viscous damping coefficients in flap

and lag, respectively, and Q are the generalized aerodynamic

forces.

If the angles (3 and C are assumed to be small and terms

through second order are retained (16:878), Lagrange's

equations of motion can be obtained:

(3 + 2C(3 + cC(3/1 + + k/lJ 3 = Q3/I (2.18)

-2 (3/ + c (/I + k /I = Q I (2.19)

* where Q and Q are generalized aerodynamic forces.

The azimuth angle, w, is given by w = Ot Hence, the

equations of motion can be differentiated with respect to the

* azimuth, resulting in

3" + 2('(3 + 2PCpp + P= = Q3/( ) (2.20)

- 23 0 + 2C e C = Q /(C9 I) (2.21)

where: p, the dimensionless rotating flapping natural
--2 an - ad2nd -an-% h

frequency, in 1 + -2 ;-2 and -, the nondimensional

nonrotating flapping and lagging natural frequencies, are

k 13l/((?) and k C /l(rl) ,respectively; and ( and CV, the

flap and lag viscous damping ration, are c /(21 0 p) and
C

c /(2I1 ) respectively.
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Figure 6. Aerodynamic Velocity Components

Rotor Aerodynamic Forces

To completely derive the blade flap-lag equations of

motion, the aerodynamic forces must be determined. Consider

the velocity components seen by a rotating blade while the

helicopter is in forward flight. The helicopter has forward

velocity V and a blade section angle of attack t. From

Figure 6 it is apparent that the component of the

helicopter's velocity in the hub plane is Vcosa or MOR.

Consequently, the flow relative to the blade can be

expressed as

Vco:acow [ MORcosw

VA = -Vcongin|= -M inV/ (2.22)

l 1Vsina-ou Jh [xo ]h

where the point A is fixed to the hub but rotates through an

*azimuth angle W. The induced velocity, v., is

25
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C. = COR/ (2 [2+.X2]1/2) (2.23)

* and the inflow ratio can be expressed as

C
X"Ptana - T (2.24)

with C T being the thrust coefficient.

-' The expression for the total velocity of a blade mass

element is the sum of the aerodynamic and dynamic components

(16:878). or

V = V+dm (2.25)

where Vdm = {
It is customary to express this velocity in

dimensionless radial, tangential, and perpendicular

components as U , UT, and U P, respectively. Hence, in the

blade-fixed frame [following the orientation used by Kaza and

* Kvaternik (16:879)],

'ORcfc(sc ipORs(w XORc(

where cW = cosgw and sg = ginw.

The total velocity of the air mass is now written in

terms of the blade-fixed axis system. Further, the relative

angle of attack can be easily defined, and blade element

theory can be used to calculate the section aerodynamic

forces (2:45-51;3:1;46). This theory assumes each blade

26
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Figure 7. Blade Section Aerodynamics

do section acts as a two-dimensional airfoil, and the induced

velocity at the section accounts for the influence of the

rotor wake. Thus, two-dimensional airfoil characteristics

can be used to evaluate the section loads in terms of the

blade motion and the aerodynamic forces.

From Figure 7 the resultant velocity, U, and the inflow

* angle, 4, of the section are U = 2U4U2)1,1 and =

tan- IUP/UT) The blade section pitch e is measured from

the reference plane to the zero-lift line; it includes the

* collective, cyclic cosine, and cyclic sine pitch angles, eo

ec e5 , as well as the blade's built-in twist (2:168-169).

Thus, the section angle of attack can now be expressed in

terms of the pitch and inflow angles as

a = e - o = e - e cosw -esinW - tan-'rUPU T (2.27)

For an elemental section of length, dr, the lift and

drag forces can be expressed in terms of elemental components

as (5:130-135;16:879)
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dL = 1 OU ccdr (2.28)

dD = -1Ut2cCddr (2.29)

where c is the section chord and p is the air mass density.

The lift and drag coefficients, CI and Cdo are, in

general, functions of the section angle of attack ct.

Defining the two-dimensional lift curve slope as a = C/a

Eqs (2.28) and (2.29) can be rewritten as

dL = 1oacU 2cdr (2.30)
4-P

1 2r
dD = pacU Cd/a)dr (2.31)

The components of these aerodynamic forces resolved into

the blade-fixed reference frame are F , F , and F (radial,

in-plane, and normal forces, respectively) (2:170):

F = -dLsin - dDcosg (2.32)

tFJ dLcog - dDsinO

where the radial component can be neglected (16:879).

Combining Eqs (2.30), (2.31), and (2.32) results in the

following equations describing the elemental components of

the aerodynamic forces, expressed in the blade axis system:

dF V1 F[-cxUJ - (C d/a)UU 1rd = 1 dpa (dr (2.33)

[dFJ [pac c T - (Cd/a) IP

Expressing these forces in the inertial reference system

yields

28
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dF r -Cog(3sin~dF As si n3dF
dF/= cosdF ] (2.34)

.dFJ [ -sintsinCdF V + cose3dF

Using the principle of virtual work, the generalized

forces in Eq (2.17) that are associated with the above

aerodynamic forces have the form (16:879;48:60,72-79)

Q,=[ dF dF* p } dFo.LfPI (2.35)

'9 Ni Ib

0 (3 ba Ib

=[dF NO. }+ dF}b~ { (2.36)

By taking the partial derivative of the velocity vector

p with respect to 3 and C, and integrating the elemental

aerodynamic forces over the length of the rotor blade, the

generalized aerodynamic forces Q and Q may be obtained:

R

Q P f rcosCdF (2.37)

0

R

Q = JrdF (2.38)

0

Thus, the blade flap-lag equations of motion can be

written as

+~~~~~~ ~ ~ 2(Cd2C p2 [pa U+ /a) UUP coaCdr (.9
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C -203 (?+2,C + =C 2]JPaUUp+ /a)UTdr (2.40)2 CIJ]0 IrIP(da T]

Blade Trim and Perturbation Equations

A helicopter blade's stability can be evaluated by

establishing its steady-state equilibrium, or trim, solution

and then perturbing the blade's nonlinear equations of motion

about the trim values (15:5-8). The steady-state flap and

lag motions are described by a Fourier series as:

31() = o+ 3 Icc ose + tIs s nW + H.O.T. (2.41)

C(W) = Co + C lcC osw + C1  
inW + H.O.T. (2.42)

The trim solution sought is not a constant but a

periodic solution. Eqs (2.41) and (2.42) are used to

construct this "trim" solution. Usually, harmonics above the

*first order are very small and may be neglected (2:157). The

(3 term is a coning motion about the hub, while the harmonics
o

lc and 3ls generate once-per-revolution variations of the

flap angle. C is the blade's mean lag angle relative to the

rotor hub. The harmonic Clc produces a lateral shift of the

blade in the plane of rotation and a lateral shift in the

rotor's center of gravity. Similarly, C produces a

longitudinal shift of the blade and a longitudinal shift in

the rotor's center of gravity (2:156-158).

The blade's pitch motion can also be represented as a

30



Fourier series:

e(w) = e - e cogw - a sinW (2.43,

where the harmonics higher than first order are again

neglected. The zeroth harmonic, e, is the average blade

pitch and is called the collective pitch. The once-per-

revolution variations in the pitch angle, e and e are
C "

called the cyclic pitch angles. Collective pitch controls

the rotor thrust magnitude while cyclic pitch controls the

thrust vector orientation (e controls the lateral
C

orientation while 9 controls the longitudinal orientation)

(2:158-159;3).

Denoting the steady-state values of ( and C as (o and o

0 0

and the perturbations from equilibrium as AP and AC, then

;3 = P3 + AP + AC (2.44)
0 0

If the above equations are substituted into the

nonlinear equations of motion [Eqs (2.20) and (2.21)], and if

the perturbations are assumed to be small enough to neglect

terms that are second order and higher, two sets of equations

result:

p 2 r (21 (2.45)

00

W C (= QCo/(11 (2.46)

AO + 2(3 oA + 2p(AO' + p2 AO = AQ/(021) (2.47)

-# 2-o AC2 + 2 21
AC A(23 AO + 2CA C AC AQ(1J (2.48)
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Eqs (2.45) and (2.46) are the flap and lag equations

* defining the trim conditions (3 and Co while Eqs (2.47) and

(2.48) are the linear perturbation equations involving AP and

AC (16:879-880).1wP Now, trim requires force and moment equilibrium on the

blade. The rotor is maintained at a fixed value of thrust

coefficient, CT. This coefficient can be defined as

CT T (2.49)

For simplicity, (30 is assumed to be small, the

steady-state cyclic lagging angles (CIc and Cis are assumed

to be zero, C0 is neglected, and (UPo/UTo) is assumed to be

much less than one tan . The

first harmonic flapping angles, defined in Eq (2.41), are

still considered.

With a constant thrust coefficient, vertical and

horizontal force equilibrium (refer to Figure 6) can be

expressed as

D + H cosac + T sno = 0 (2.50)
*P 0 0

T 0 cos = mg (2.51)

where the aerodynamic forces are as follows:

T, the thrust, is normal to the hub-plane and is given by

le. 2 R

N T 0 2 JdFZdW (2.52)

0 0
P
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Ho , the rotor drag force in the hub-plane, is

* 2n R
N f f [dFo cosW - dF sinW do (2.53)

00 0

D . the helicopter parasite drag, is

D = lvf (2.54)P 2

where f is the parasite drag area, N is the number of

helicopter blades, m is the rotor blade's mass, and dF x

0

dFy . and dF are the steady-state values obtained from Eq
0 0

(2.34).

The steady-state values for the thrust and rotor drag

forces can now be calculated:

o- 4 +9- p1 j* 1
T=NpacECa0) [013 me + - Cd (2.55)

opacR + (2.56)
0 4 r[(d 0e) 3e axI

Defining the blade Lock number as y = pacR4/1 and the

rotor solidity to be a = Nc/(nR) , the thrust coefficient,

CT, and H become

CT =aa[eo(3 M2) - * * 2d) (2.57)

= In - + poec + (2.58)

Trim also requires rotor pitching and rolling moment
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equilibrium; the rolling moment, M , and pitching moment,

0

M % on the rotor hub are:
* y0

2rr R

M~~ JrainWdF dW(.9
o 0 o (2.59)

• 27r R

y °  - f- f rcoswdF dW (2.60)
00 0 10

* where dFo is the steady-state normal blade axis component of

the aerodynamic forces [Eq (2.32)]. Expanding these two

moment equations yields

M 'O2 IN[2 e s(_+3 2) _11+Cd V23 O

x 4 o + 2I (2.61)

2 10

M N - IN[ej + + 1 2) + (s+ Cd) (g"p t'lI + I-1'° (2.62)
YO 4+ -PaN

However, in equilibrium, M = N = 0. Consequently,

0

* expressions for the cyclic pitch, e and e can be derivedc s

from Eqs (2.61) and (2.62) such that the first harmonic

flapping coefficients (3Ic and 0 In are suppressed (16:880).

C- These are:

1 1

e - 311 + + 1( (2.63)
c 30 %PO a 4 V2

IC e c +- .(I + 3 ) (2.64)

The trim equations [Eqs (2.45) and (2.46)] require

C- computing the equilibrium generalized aerodynamic forces
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and Q Using Eqs (2.37) and (2.38). these equilibrium

forces are

P' -rcosedF(+ 21 ! (2.65)
0 ao oo 0

R

Q rdF o r02 I[,,. l]o- - 1e - 12

0 2 4C

*+-F + inw{-1 Xeo 3e (1P2 8 o c 3aj4a 3J NP ine+-2e +--s  l

+ cog tP-(3-ec + o (x+JJ (2.66)

The complete set of trim conditions have now been

defined. Remembering that Cog Clc" and CIs are all assumed

to be zero and 0 and (31l are suppressed, the varioun trim

equations can be used to solve for the remaining unknowns,

(3 0eo ec" e9" and X. The equations required to determine

these unknowns can be Summa9rized as follows (noting that, due

to the assumptions used, several of the equations derived

earlier are either redundant or identically satisfied):

X = [( {-+,40C2j12) /2] ,2 (2.67)

0 = 2 [101 + -!,\ 1 + 2d(2]]Iis ii + -12.68)

2pL, .2J e at -. 3 a jj

no f%~T 2 + 3j 2) X(I + CiI1(2 M2.~)] (.9
12432)2 - 6.2]

(2 + =p 12.6P
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[.2 1 + 1 2e = e 0 _-- X(1 + X/ + 2 (2.70)(I _d)
'~~ +c  V ° I (2.71)

Note that the following equilibrium parameters are
independent: p; X; o; CT; and C For this analysis all of

these variables, except M, are constrained to specific values

so that the trim conditions at various forward velocities may

be calculated.

The steady-state equilibrium terms appearing in the

perturbation equations of motion. Eqs (2.47) and (2.48). have

now been determined. However, before these equations can be

~solved, the perturbed aerodynamic forces, AQ/ and AQ., must

be evaluated.

Perturbing the generalized aerodynamic forces [Eqs

(2.37) and (2.38)] by AQ and AQ( yields

R

A Q/ = ICOSC 0AldF 1 a 1sn Ad 2.72)

0

R

AQ' J rA(dF)
0

where the perturbed values of the elemental forces dF and

FdF are obtained by a Taylor series expansion about the

steady-state equilibrium condition (16:880):

dF dFyo+&(dF
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B(dF ) e (dF )

dF + UAU AU + H.O.T. (2.74)

S OU P 0 T 0

dF = dF +A(dF

9(dF ) e(dF )
dF + AU + AU + H.O.T. (2.75)

o P 0 P T 0

Neglecting the higher order terms, assuming (Cd/a) << 1

[or (Cd/a - 1] ) ] -1 , and expanding the partial derivatives

in the above equations leads to the following expressions for

the perturbed values of the elemental aerodynamic forces

(16:880)

A(dF ) = - -ac[eUTo- 2UPo}AUp+eU + 2 (C-dUT}AUT]dr (2.76)

1 00r U

* A(dF ) = oac [-UU U Udr (2.77)

where e is defined by Eq (2.43).

Notice that Eqs (2.76) and (2.77) contain steady-state

and perturbed values for the velocity components U P and UT -

Evaluating the expressions in Eq (2.26) at the trim condition

yields the steady-state equilibrium values

U = ]fO(j-X + MO COsW) + rCo/00 (2.78)

UT = rO + RMO (sinW + C 0 cosw) + RBX0.( o  (2.79)
0

and perturbing the expressions about the equilibrium yields
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AU = rw, + P( + Co + IXO + Aconw (2.80)

* AU T= rW -rM 0 A + RXC0° (3A + C OAP

+ Rg4AUcosw - A(sinw - 0 oco Acosw) (2.81)

* With the expressions for the perturbed values of the

aerodynamic forces now defined, the perturbed blade flap-lag

equations of motion [Eqs (2.47) and (2.48)] have been formed.

* These equations are ordinary linear differential equations

with periodic coefficients.

Verification of the Blade Flap-Lag Equations of Motion

For convenience, the equations of motion can be written

* in the form

x (W) = A()x(W) (2.82)

• where A(w) is periodic with period 2n and the state vector

x(w) is defined to be:

T
x(W) = [p , , A', AC ] (2.83)

Hence, the periodic matrix A(w) of Eq (2.82) has the

form:

(-I0 0 1 0

0 0 0 1

a 31 a32 a33 a34 (2.84)

( a41 a 43 a44
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where

a a3 1 r= 1 Co [CiC 2 -c 3 -c 4 (2ec 2 + X - i4ocofiw)

+ c 5 ~~2e)] _ p 2

a [cl (peca+ \e~c+ 2c?, - c(et~0 0 + 2%I)

41 2 0:a

a3 2  IC o 0 - 0 c8 + c~~ 117+ 5P 0 1)j

+ C e1+ 1 2 2 + I [X(30]2 + PC + t

4 + P 10+ + -~ (2.85)

a [93ca + o230
42 2 V 40o)

+ C({~. 7  ~13col + 2{2d)C1 0 J] -- 2

a3 =---c cosC -2pt%

332 1 0 t

43 2 V7ec +-2 <

a ?coslr[2ec+ 1 12
a3 4 = 2' 18 4looJo 0 ~

a44 2 L[e(-N'c7 + -4:-o a (dc]-2[ with

1
1 3< + :21o+ VC0By

C 2  PC + \13 oc

C3  4< 0 ):o VM
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1 + -o oO'

4 3 :o - 1 o Io~oco

c5 o - +o o w (2.86)
5 4o0 30 §3o~oc

Ca = sinW+ C 00oOw

c 7 = - ocogw

1 p X
°8 = + P 6 + ~
08V + 3:oCo

co = K(? + Mcos - Po( sna

10 3 VO + 26 :0oro

Now that the periodic state matrix A(W) is known, blade

stability regions can be determined. The stability

boundaries generated are based on the assumption that the

blade has damping along the hinge line. The validity of the
p

current model to accurately predict stability regions is

verified by comparing the results with those obtained from

published studies (15;16). In generating numerical

solutions, Kaza and Kvaternik (16) made several assumptions;

these assumptions are also used for this study. For example,

the trim angle of attack, ot, the parasite drag coefficient,

Cd , and the horizontal force coefficient, C , are all set to
P

zero. In addition, the following terms are set to fixed

values:

y = 5

= 0.05
(2.87)

C = Cd = 0.01
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a =21

9 Stability boundaries are obtained using Floquet theory.

The state transition matrix is determined numerically and

evaluated at the end of one period. The eigenvalues of this

*• monodromy matrix are the system's characteristic multipliers.

System stability is assured if all of these characteristic

multipliers have a magnitude of less than one.

* Several different methods can be used to numerically

integrate an isolated rotor blade's equations of motion.

Gaonkar, Simha Prasad, and Sastry (47) performed a stability

I r analysis of a rotor modeled as a system with periodic

coefficients and presented computer-generated data on the

comparative efficiency of four classes of solution

* procedures: Runge-Kutta one-step; Hamming's predictor

corrector; Bulirsch-Stoer extrapolation; and a hybrid or

variable-order method which embodied the special features of

* one-step and multistep methods, such as the Gear type and the

Shampine-Gordon type. It was determined that Hamming's

fourth-order predictor corrector method was the most

economical with respect to three-digit accuracy. This method

evaluated the equations of motion twice per integration step,

as compared to four or more times when other methods, such as

Runge-Kutta, were used (7:27;48:100-101). Consequently, for

this study, Hamming's modified predictor corrector method is

used to numerically integrate the equations of motion for one

C. period.
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The curves presented in Figures 8 and 9 are stability

* boundaries as a function of p. the rotating flapping natural

frequency, and wr• the nonrotating lagging natural frequency.

Figure 8, which illustrates blade flap-lag stability in

hover, compares quite well with the results presented in Kaza

and Kvaternik (16:881). The general size and shape of the

curves are similar, with small differences resulting from the

fact that Kaza and Kvaternik set the value of e to be the
0

critical collective pitch angle, above which the blade

becomes unstable. They determined this value to be 0.40. On

the other hand, the present study used Eq (2.69) to calculate

the trim value for e which turned out to be 0.29722. In

addition, Kaza and Kvaternik did not specifically state that

the steady-state mean lag angle. Co, was zero when they-0
generated the p versus w curve for hover. Because C was

assumed to be zero for the remainder of the curves they

presented, the current research effort used the same

assumption, even for the hover case. If C were indeed a

value other than zero, the two curves would differ. Still,

both sets of data appear to be in close enough agreement to

assume that the present model's results are valid in hover.

Although Kaza and Kvaternik (16) presented a stability

curve for a flap-lag hinge sequence at p = 0.40, this curve

was constructed using an approximate method of solution.

Even so, the authors concluded that there was close agreement

between the results using both the approximate method and

Floquet theory for p = 0.40 for the lag-flap hinge sequence.
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The results presented in Figure 9 are in very close agreement

with Kaza and Kvaternik's results using the approximate

method. Hence, it can be concluded that the present study's

results for p = 0.40 accurately compare with previous

studies.

Because the solution to the blade flap-lag equations of

RI, motion was found to be well-behaved throughout the region of

0.00 5 M 5 0.50 it was assumed that the derivation of the

equations, as well as the assumptions used, were consistent

and compared well with previous efforts. Therefore, it was

concluded that the solution to the rotor blade's equations of

motion were verified and considered accurate enough to be

used throughout the remainder of this study.

0
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III. Stability of a Coupled Rotor/Fuselage System

Chapter II summarized the development of the equations

of motion for an isolated blade experiencing flap-lag motion.

With this information available, consider now the equations

of motion for the entire helicopter. These equations arep. derived in order to investigate the stability of the coupled

rotor/rigid body equations of motion. The assumptions and

approximations used are summarized below.

Dynamics

In free flight, the helicopter has six rigid body

degrees of freedom; namely, three rotation (yaw, pitch, and

roll), and three position (vertical, lateral, and

1 longitudinal) components. It is customary to split the six

-degrees of freedom of a helicopter into two groups of three

each and assume their dynamics can be analyzed separately

4 (2:822;49). The first group contains the lateral

Idynamic--lateral velocity, roll attitude. and yaw

rate--while the other consists of the longitudinal

dynamics--longitudinal velocity, pitch attitude, and vertical

velocity.

Since the rotor is a maJor factor in the helicopter's

stability analysis, the rotor's motion must also be modeled.
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C

rFor a rigid hinged rotor, this requires three additional

degrees of freedom for each blade; namely, flap, lag, and

lpitch components. For this study, pitch is used for control

while flap and lag are free variables.6. As with analyzing the isolated blade's equations of

motion, an analysis of the helicopter's equations of motion

requires the establishment of several Bets of coordinate

frames. The inertial reference frame, X, Y, Z, is fixed to a

flat, non-rotating earth. Further, the wind axes are defined

with the x axis being along the free stream velocity, the zW

axis in the plane of symmetry when one exists and nominally

pointing down, and yW forming a dextral set. The free stream
%W

velocity is then expressed in the wind axes as

V

*{V} 0 (M.1

Another reference frame used, the vehicle carried frame,

• F is the same as the inertial frame when the earth is

assumed to be flat and non-rotating. This axis system is

denoted as xV , yV' and zV . The helicopter's body axes are

related to those of FV via a set of Euler angle rotations

through the angles W (yaw), & (pitch), and q (roll). This

set of three independent rotations involves first rotating an

amount W about zv to produce an intermediate set of axes xi ,

Y 1 9 zl, followed by a rotation through an angle 0 about yI'

carrying the axes to a second axis set x 2 , Y2 ' z2 9 and

finally a rotation about x 2 through an angle V to yield the
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body axes x B y B z B Thus,

-B/V ..7-(32W P ,2 + ejl 1 + Av (3.2)

and [ -c CO5MP -a&

0LBV : ssecw - cqpw sqpsegw + cIcW epce (3.3)

ICIL,5&CV + 5n)SW Cop5OBw - M%~CW cq)Ct&

where cp = coso, so = sinp, ce = cone, s = min&, cW = cosw,

and sW = ninW.

The wind axis system may be oriented with respect to the

body axes by means of the aerodynamic angles a and (:

{B BW{V}

where B/W a' - f and

coscosna -sin(3sinot -nint

LBW sn cosn 0 (3.5)
* 

cog sina -sinsino co*a

Note that a, the helicopter's angle of attack, and (,

the sideslip angle, can be written as (50:10-11):

a = tan-(w/u) ; = sin- (v/V) (3.6)

where u, v, and w are the components of the velocity along

the body axes.

To accurately model a helicopter, its rotors must be

analyzed. The helicopter considered possesses a single main

rotor, as well as a tail rotor. The main rotor is assumed to
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be directly over the helicopter's center of mass and provides

lift, propulsive force, and roll, pitch, and vertical control

for the helicopter (2:9). The tail rotor balances the main

rotor torque as well as provides the helicopter's yaw control

(2:9,264;5:93). When the main rotor is attached to the

helicopter's body, the hub-fixed rotating axis system, used

in deriving an isolated rotor blade's equations of motion,

can be oriented with respect to the helicopter body axes by a

shaft angle of attack a (positive for a rearward tilt fromm

the horizontal) and a shaft cant angle (positive to the

right) (51:187). Denoting the subscript m for the main

rotor, this orientation can be expressed with the following

matrix:

* cot 0 act• m

Le = j sc(sam com camsom (3.7)

[-a c oa -Ca COm m m mW

In a similar manner, the orientation of a tail rotor can

be specified by a shaft cant angle 0t (positive for an upward
"I

tilt, as measured from the vertical) and a shaft angle of

attack at (positive rearward). Note that the subscript t

denotes the tail rotor. In addition, the definition of the

tail rotor hub axes depends on the main rotor's rotation

direction. A counterclockwise rotating main rotor requires

the tail rotor's thrust to be in the direction of y while
B

clockwise rotation requires the thrust to be in the opposite

direction (51:187). If A = 1 represents a counterclockwise

.49
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rotating main rotor and & = -1 denotes a clockwise rotating
3

main rotor, the tail rotor's hub axes can be related to the

body axes by

cc t Aca c g t C
LBt = 0a t  AmCOtl (3.8)

W l-scat AMc t ct -s~tc tJ

Assuming neither the main nor the tail rotors have shaft

angles of attack and cant angles, and the main rotor rotates

in a counterclockwise direction, L Bm and LBt are as follows:

* [-1°0] r-1 01
LBm = 1 0 L = 0 03.9)

0 0 -1 0 I 0

Since the earth is assumed to be flat and nonrotating,

the angular velocity of the body axis system with respect to
-B/I -B/V -B/V

the inertial frame is W = , where W is the angular

velocity of the body frame with respect to the vehicle

carried frame. Denoting the body axis components of the

body's angular velocity with respect to inertial space as p,

q, and r, Eq (3.2) can be written as

p1
{B/I} [q &cp + Wcosmp (3.10)

rcpc - B

i -  or

= 0 c -u Eq (3.11)

WB 0 u~psece cposec-& B- r B
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.Eq (3.11) expresses the kinematics in the body axis

system.

To aid in deriving the helicopter's equations of notion,

the following terms need to be defined: B denotes the entire

helicopter, to include both the main and tail rotor; B1

denotes only the helicopter's airframe and horizontal tail

(the main and tail rotors are excluded). It should be noted

that the airframe includes not only the helicopter's body but

also the vertical tail assembly, to which the tail rotor and

5' horizontal tail are attached.

The equations of motion for the helicopter are

F ma (M (3.12)
ccm cm ext

* where F ex t the total external force acting on the body, is

F ext Faero +FM +FTR + (3.13)

Faero represents the aeronautical forces acting on B 1, FMR

and FTR include the external forces acting on the main and

tail rotors, respectively, and MgA V is the weight force. In

addition, M is the helicopter's total mass, including the

main and tail rotors, and acm, the inertial acceleration of

the helicopter's mass center, can be expressed as

_ d4 dV -W/I
a +=-." V (3.14)
cm =dt- dtx

w W/I =-W/B B/I

in the inertial rate of change of the helicopter's

cm
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angular momentum about its mass center, and includes the
" angular momentum of "l I the main rotor and the

tail rotor ( Finally. ex the total externali€ R • ~~m) e, tetetr

moment acting on the helicopter, includes the termsi +
aero

R 31TR ,where Uo UR' and UTR are the moments acting

on B the main rotor, and the tail rotor, respectively.

Flap and lag contributions to the equations of motion

for B should be considered in this analysis. The

contributions to the force equations are of the order of m/M;

hence, they can be neglected. Each blade's flap and lag

motions do, however, produce coupling effects on the

airframe's moment equations. For the present, the moment

equations will be derived ignoring any contributions from the

flap and lag motions. Later in the chapter, the coupling

between the body and the blades will be addressed.

Figure 10 summarizes the forces and moments acting on

the helicopter (2:777). The notation used in this figure is

as follows: xBy B9 zB are the body axes; tx , ty, tz are the

distances from the center of mass (c.m.) to the tail rotor's

hub; I z is the vertical distance from the c.m. to the main
!z

rotor's hub; X., Xw are the distances from the c.m. to the*x z

horizontal tail; T., H Yme D are the main rotor's thrust,
m a P

longitudinal (drag) force, side force, and parasite drag

force, respectively; Tt Ht. Yt are the tail rotor's thrust,

longitudinal force, and side force, respectively; MB., My

M U are the B1 , main rotor, and tail rotor pitching moments,
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Figure 10. Helicopter Forces and Moments

respectively; LT# DT are the horizontal tail's lift and drag

forces; and LBO D By Y are the lift, drag, and side forces

acting on B1 through the helicopter's center of mass.

Now, in matrix form, Eq (3.14) can be written as

f a}m W 0 L F' II 0 (3.15)ac0 0 W

Expressed in body axes, Eq (3.15) becomes

{}mI = L BW[0] + [W/I]BL BW0] (3.16)
°w

From Figure 10, the external forces are

-D . o} T'D co sa .

{F }[ro =Y B] {F}=[ :LP {FTR}t =rt] (3.17)
-L T *D sincTIB- W a+ n t t
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Collecting terms, Eq (3.12) yields the force equation

L ae-rojL L MRTRI
LBW[ 0 B. LBWIM BWOj = LBW+LBt t

+LBV 0 (W/I LBW ] (3.18)

* Developing the moment equations for the entire

helicopter requires calculating the contributions from B 1 as

well as the main and tail rotors. The inertial rate of

change of the helicopter body's (B 1) angular momentum about

the mass center is expressed as

= +[~BIBJIB (3.19)

where {HB} - ] / Now. the moment of inertia,
B [IcJB[ .B

[I] , is about the helicopter's center of gravity and

includes not only the body terms but also the terms for the

main and tail rotors:

[Ic]. = [IB]I + [xMI] + [ITRE] (3.20)

Assuming the helicopter's airframe, excluding the

r rotors, is symmetrical in the xBzB plane, the moment of

inertia for B 1 is given by
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01 1
[1B]= j (3.21)

where the moments of inertia Ixx, I yy, and Izz are about the

body's roll, pitch, and yaw axes, respectively.

The moment of inertia for the main rotor must also be

expressed in the body axis system using the parallel axis

theorem (52:297-298):

z 2 0 0

IMR .[m I.]' +Z Z2 0z  (3.22)

m m

is the number of blades on the rotor. Note the primed term

on the right-hand side of Eq (3.22). Since each blade does

not pass through the origin of the body axis system, a term

denoting an isolated blade's moment of inertia, expressed in

an axis system which passes through the mass center of the

blade, must be calculated. Now, Eq (2.15) provides the

expression for an isolated blade's moment of inertia in the

blade-fixed reference frame, and can be restated as follows:

I.MR] 0M1 0 (323
b 10 0 01

where I is defined to be:
B

m

I (. Jdr (3.24)

0
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J

Here, R is the main rotor's radius, r is the radial
m m

location on the main rotor, and pm is the main rotor blade's

p mass density.

The term in Eq (3.23) must now be expressed in the body

axis system. First, Eq (3.23) needs to be oriented in the

rotating hub-fixed reference frame using the matrices found

in Eq (2.4). In this situation. Lbl remains the same, and

SLh can be redefined as L lm. The moment of inertia for an

isolated blade can now be expressed in the hub-fixed rotating

system:

[IMBIm L1L lb[I L b Llm (3.25)

T Twhere Lml 1 and Llb = [Lbl]

Finally, Eq (3.25) can be expressed in the body-fixed

reference frame:

*[,MR]'= Lam[IM]mLmB (3.26)

Similarly, the expression for the tail rotor's moment of

rinertia, in terms of the body axis system, may be derived:

(t 1
I TR]B MtEITR] + Ntmt -txty (t+t) -t t (3.27)

[1 B _t +t )t t 2t I (327
S- z  xyz  (tt B

where m is the mass of a single blade on the tail rotor, N

is the number of blades on the tail rotor, and
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[ITRJ LBt LtlLlbLITRJ'blLltLtB (3.28)

Note that Lit L and IT i identical to Eq

(3.23), except that tail rotor terms are used. Likewise, Lt

mirrors L However, since the tail rotor is usually a

flapping rotor with low disk loading (2:264). Ltl is the

identity matrix and L = L
tb 1b'

Once [I] is known, Eq (3.19) can be written as
0B

,. [I][ + [ic]q + [B/I[Ic][q (3.29)
( B B

The inertial rate of change of the main rotor's angular

momentum must also be found, noting again that the coupling

* of each blade's flap and lag motions to the airframe are

ignored for the present. Assuming the rotor's angular

velocity, Om, is constant, the following equation results:

I = [B/I]{R} (3.30)

where {HMR}B = mf B / b x rb)}B In terms of the blade

axis system, [0 r] 0
mb -B/b

r= J (3.31)

0 Jb b

Consequently, {HMIB = N C AI b  Still, a rotation

from the blade axes to the hub-fixed rotating axis system by
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means of the flapping angle, and the lagging angle, r
m

is required, yielding

-I-m~l 1 (3.32)

Hn M ]
The rate of change of the tail rotor's angular momentum

about the mass center may be derived in a similar fashion,

resulting in the following:

- B/ LBtLt] L (3.33)

YtItnt-b

The external moments acting on the helicopter result

from B,'s aerodynamic forces, as well as from the main and

tail rotors. For instance, a moment, MB , is due to the

influence of B . In addition, the horizontal tail's

aerodynamic forces exert moments on the helicopter.

Expressed in the body axis system, the moment arm from the

helicopter's center of mass to the horizontal tail is

{rT} B -x 3.34)

Hence, the helicopter's external moment due to the

aerodynamic forces acting on B as well as the moments

resulting from the horizontal tail's aerodynamic forces is

fi ero 1B N_,+ I z 0 rx L W0(.5

0L-L0rJLB x B T
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The main rotor also exerts moments on the helicopter.

* In addition to the main rotor's pitching moment about the

hub, M y m , the aerodynamic forces acting on the main rotor

also generate external moments on the helicopter. If the

moment arm from the helicopter's c.m. to the main rotor is

- , then

{r}lB tz B

{M-} M + z 0 0 LBm {FRm (3.36)0M B 0 0 0 jB

In a similar manner, the tail rotor exerts a pitching

moment on the helicopter. Further, if the moment arm from

the c.m. to the tail rotor is

"" t B

{rt} = [ I (3.37)
t" - z B

* the tail rotor's contribution to the external moments acting

on the helicopter is as follows:

z y
0'R} [+Y-]B 0 t x L BtT (3.38)RB Yt-B t y -t x -z 0 t Bt1.1

Consolidating the various terms derived from Eq (3.12)

results in the helicopter's moment equation:

r5
_, B B BmMM Y~n-b
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+ [Ic] B L'i J q tJaeroi,,t"MRJ,,tTIJIj(.9

LJB

Summarizing, the equations of motion, as expressed in

the body axis system, include the kinematic relationships4,
found in Eq (3.11). as well as the force equations, Eq

(3.18). and the moment equations, Eq (3.39).

Aerodynamic Forces and Moments

The aerodynamic forces acting on B include the body's

side force, lift, and drag, as well as the horizontal tail's

lift and drag. For this analysis, the side force term will

be neglected. If a 0 V 0 and 6 e are the equilibrium values

for the angle of attack, velocity, and elevator angle, the

total lift acting on the vehicle can be expressed in

equilibrium and perturbation terms as

L = L + AC + AV + !L A6e
e e e

= L + L Ac+ AV + L(A6e 3.40)
e at LA L 6 6e

where Aa, AV, and A6e are the perturbations from equilibrium.

The lift acting on the body and horizontal tail may be

written directly as (50:23-29)

LB = -PVSC 1 LT  2 C6e) (3.41)ioB L C T L C T ' + ' L 6 e

where: S B and S T  are the body and tail frontrl area,

60

I



respectively; CL CL and CL are the helicopter, tail,

and elevator lift curve slopes; and aT = Ot + i + C ,with 4.

being the tail incidence and c the downwash. Noting that L

L B + L T then substituting Eq (3.41) into Eq (3.40)

results in

Le= v:f'o oSBCL + STCL ) T(CL F-]+ CL e}
aX' T IT 6

L V v2rS c + S cV 201 B L O T La
T (3.42)

LV PV ofto(SBCL + STCL II+ S T(cL + CL 6e0)

L I=1 2 C6 e 0PVTCL 6

The drag term may be expanded in a manner similar to Eq

(3.40). Johnson neglected drag due to the horizontal tail

(51:208-209) and considered only the aerodynamic drag acting

on the body. Expanding the drag coefficient (53:165;54:204)

yields the following term for the drag:

D= .V2(0O04AB+ 4L C 2 (3.43)

where %is the helicopter's wetted body area.

Thus,

D 1= 004 + 4SC2O2
e ~ ~ ~ r =i0 ;SB L~ot

4 2 2D = -p c a(3.44)
a n poSBCL 01Oo

N.-00 . eIaC
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[I"
DV PV P 0.004AB+ ~SCZ?)

The moment equation is found to be (50:28;51:208;53:52)

I 2 -( + C + C 6e (3.45)
V o a m6e

where c is the distance from the helicopter's center of

gravity to the moment reference center of the airframe, Cm
0

is the helicopter's pitching moment coefficient at zero lift,

C is the helicopter's pitching moment slope and results-2 m

from the fact that BI'S lift and drag do not act through the
If

helicopter's center of gravity, and C is the pitching• m6e

moment coefficient due to the elevator.

Employing an equation similar to Eq (3.40) results in

1 2 -c +Cc1+C 6e
Me =ip£onB-(m m m 6e

M = 1VoS cc
a0 o m (3.46)

"V = PVoSBc(Cm + Cm ao + Cm 6e)
o B 0 6.

12-
=6 -VoSBcC6. 2MoB m6 e

Trim and Perturbation Equations

Now that the generalized equations of motion for the

coupled rotor/fuselage system have been derived, they may be
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specialized for particular problems of interest, such as

- flight in the horizontal or vertical plane. For thisC,
analysis, straight and level flight will be considered. This

requires W = = = 0. Further, assuming a flat,

non-rotating earth, since the heading angle w is a constant,

it can be set to zero. Parasite drag on the main rotor and

side forces on the fuselage are neglected. It is assumed

that the sideslip angle (3, as well as the tail incidence, 4,

are zero. The downwash £ is a small angle and can be

neglected (50:21). The acceleration of gravity is constant

and the properties of the atmosphere are known functions of

altitude.

The equilibruim and perturbed values of the airframe's

motion can be expressed as:

V = V + AV
0

= + Act (3.47)

& = 0 + A&

The equilibruim and perturbed expressions for both the

tail and the main rotors' flapping and lagging motions were

summarized in Eq (2.44).

Based on the above assumptions, Eqs (3.11), (3.18). and

V(3.39) yield the following equilibrium and perturbation

I nd
equations, neglecting second order and higher perturbations:
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FORCE EQUATIONS

EQUILIBRIUM

L ema 0-D eca 0-H -H t- mgm~ = 0 (3.48)
e e

V.-L eca 0-D ema 0-T m+Y t+mgcl&( = 0 (3.49)
e 0 B 0 0

PERTURBATIONS

*Aica 0-eAa~V a=4"a{(L -D.)cao+ (Lx+ D)B -H -Ht}
{L0 a o e~ tv e) a)-H(. o]l

+AVI~naoD~ca -H M tI-H m(0(03H,0C

-g&ce -AqV ma (3.50)

0 0 0

EQUILBRIUMMOMENT 
EQUATIONSKe -L Tr3-otm0+,r 1co+z H +t H t+t x 4M t =N 0 (3.52)

e T*7 O 0) Me Zt e t e

PERT URBAT IONS

(. = k1- [{M- LT(maY )+L (Ya c]
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+ H +t H t Y +M A+ -LTV(r aa+rcaz)

+1 H +t H +t Y +M 1IAV+1 H ((,C)+t ()
V V~mz mV z tV xt VYmj zn')t

+t Yt (, ) M (3.53)

where

LT = I1 V2S L C 6eTe ipO % * eo

L 1 2 (3.54)= PVoSTCL

T o T{CL6e

KINEMATICS

W = Aq (3.55)

Calculating the equilibrium conditions requires an

iterative procedure. Initially, the tail rotor is neglected

and hover is assumed in order to calculate the maximum value

of the main rotor's thrust with Eq (3.49):

C T Mg/ 2 (3.56)

Using this value for the thrust the main rotor's trim

conditions can be found from Eqs (2.67-2.71). Terms for &of

( t and 6e can then be calculated:
O0 0
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S = -(D' + Hme+ H~)(~

(M6e_ LTt":)Mg-T +Yt.)+L T [CzH m+ t zH t+tx tjMex 6e -  
e z e xel

Iao= (3 .e57)
.6- ID -LT 6 e (M - LT o ttX)

6eo 0g-T+Y _c1 (D+L
LT 6 e e teo 0)

where

-: D -- v° 0.004A 1.).
D = v0O4 (3.58)

Note that although Eq (3.57) possesses tail rotor

components, they are neglected for now, as are higher order

terms. Using the initial net of equilibrium conditions, a

new value for the main rotor's thrust coefficient may be

calculated for non-hover conditions using Eq (3.49), again

neglecting the tail rotor components:

l CTm = -L -D'+ Y / (P0 R:) (3.59)

With this new value for the thrust, equilibrium

conditions for o o" &, and 6e 0 are again calculated, and this

.4 process is repeated until CT converges.

Once the main rotor's thrust coefficient has converged,

g the tail rotor is added to the system, and new equilibrium

values must be calculated. To accomplish this task, the tail

rotor's thrust is calculated using Eq (3.60):

e6
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CT (3.60)

co New values for CT  • = o r 0O and e are now calculated

after adding the tail rotor contributions into Eqs (3.57) and

(3.59), and the process is iterated until both C and CTm Tt

converge. These thrust coefficients can then be used to

generate the trim values for both blades, as well as values

for & , So" and 6eo. The result is a set of equilibrium

conditions for the helicopter.

With equilibrium established, the perturbation equations

can be formed. The state vector includes the flap and lag

angles and rates of each rotor and the vehicle's forward

velocity, angle of attack, pitch angle and pitch rate, or

• T

x(y))jPO( i,,) ,C g()jA(3 AL V A9 ALq] (3.61)

where Aa 2 = V Aa, i is either the main or tail rotor, and

varies from 1 through N, the number of blades on each rotor.

It ins desirable to differentiate the system with respect to

the main rotor's azimuth, ', and nondimensionalize the

helicopter's speed with respect to the main rotor. Hence, Eq

(3.61) may be written as

f 1 1= ,(,)1A,,jACiA A, ( , A&. A] (3.62)

where AM = AV/(R) , V =V/(R) and Ao =Act.

For simplicity, x(W) may be written as--il(w).x2(W)
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where

(i 1P4) F 1
1w AP 2 A&x I *

AC LA& JL ,

Before the equations of motion can be put into the form

*) x = A(O)x(w) [Eq (2.82)] two additional terms must be

accounted for. These terms result from the tilt of the main

rotor's thrust vector with the tip-path plane (the plane

described by the blade tips as they rotate), as well as the

tilt due to the helicopter's angular velocity (2:164;

788-789). These terms, added to Al and A& , are generated

by the following stability derivative:

X B Ig La :Zi2 +X (3.64)CT ip R C T HP)

where

CT

X m + Ptant (3.65)
HP 2 0+X 2

Note that Eqs (3.50), (3.51), and (3.53) possess two

sets of terms, one including the vehicle's state, x2 W,

while the other considers the coupling terms resulting from

the interaction of the blade dynamics, x1 (w). Rearranging

the equations results in the following:
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V a a a d d d d
14 11 12 13 14

a; ;2 a;3 a24 21 d 22 d23 d24
x2 (W) 0 0 0 1 2 (Wo+ 0 0 0 0 (

a4 1 a4 2 0 a4 4  d41 d42 d43 d44

where

a 1 1  {DV.(H+Ht)ca.+ (T-Y t ot0

a L 1 L -( H c +(tT o
12 KW) e am 0j~o+Y~mjoo

a 1 3  -go lo oJ/m02)

a X
24

a'2  -10 V - t  co+-TLr Ba

, ,, o xO + K .0) T x o rc

. a23 o-0 M/

I'.-=

a" zt

.

;4V

a m ga+T o o t o t

4 2 -- o- To I  0m )L

.y z a o x x t

-+M +{H t o.t Y.l

,a. 44 =-MRm~z~q/Ic
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Because the tail rotor is a flapping rotor, lag angle

and rate perturbations can be neglected. Consequently, the

main and tail rotor terms in the D matrix differ. For the

main rotor,

d = -m{b ca + b 5 sao}

d12 = -rfb 2 co + baoC}

d = -rm{b 3 co + b 7 sco}

d = -I-'{b 4 cao + b 8 sao)

d21= Fm{b I9 o - b 5 cat}

d22= F mb 2sac - b6 caco} (3.68)

d23 = rmb 3sc o - b cao}

* d2 4 = rmf{b 4s - b8ao0

d41= lm{zmb l/Rm + b 9 }

d42= Ilm{Zmb2Rm + b 1 0 }

d43 = ,m b3/Rm + b ll

d 44= lIm{Zmb 4 /mR + b 1 2 }

while for the tail rotor,

d11 = It{bl3sc o - blcax}

d 13 = Itfbl4Sa o - b2caoj

d 2 1 = Ft{bl3cco + blgso} (3.69)
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23 =rtf1 14 "o * 3 "o

d d4 1 = 1ltftzbl * tb 13}

d 3= \tz b3 + txb,1 }

where, with i denoting the Oummation, from one to N, of the

number of bladen on either the main or the tail rotor,

* F 1y / 2)2  t = =tt,/2RR(2

m m m (mJ t

-r 
r)

=i m m _____t

in 21 ' t 21
C C

b= 9W.{( t+P-2t,-20 t qd}+13 cW.{2ePt + 1 t t +?j}

* 2  o 5w.{ Vtsti+X3+t 2 t w+ 4 -d}+(ocv{-e t 2 t 4 +cot5+tl}

b 3= SW i(et 5 +t 3]+tot5 cwp

*b 4 =SW.(- H t2t 5 PI)-(~ocW,(2e t 5 +l2.t 3 ]

b5  0 -2e 5 ~ 2 t 4 +2

ba= et 2 t4 -o rt 5 -t I

b = t7 5

be= 2et +It (3.70)

b9 =(29tott 4 t 5 +>30 )CW 4

b14o (-21et 4 t 5 +P'tO.2.tl)cWi
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b tCW

* b 1 2 = - (2et 6 3t 3)cw.

b3= osWJt{-2o01t 5 +1(t 2 t 4 +xI3o]}

13 13 ~

* +cw{- e(t 2 t 4 +xo+S2tl+2ot Ca-d )

14 0 4L 5- jet5 +t3

and

= P 2 - Xt 4

t = 1 + 2p 0sinW .

t = X - j03cosi (3.71)

t4 X3 0 + P cos

1+

1 +1

t6 . + 1 SinW.6 4 V'o

The flap-lag equations of motion previously derived for

an isolated blade still hold for the coupled rotor/fuselage

system, with a few exceptions. Adding the fuselage

introduces additional coupling terms resulting from AP, Aal,

A&, and Ae9 These coupling terms must be determined and

added to the existing blade equations. In addition, recall

that the moment equations for B 1 were derived ignoring any

0 contributions from each blade's flap and lag motions.

Coupling the rotors to the airframe introduces blade flap and

lag terms in the airframe's moment equations, and these must

0 be accounted for. Finally, in an attempt to expand the
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helicopter's operating envelope reversed flow should be

considered. Each of these issues must be addressed
0

separately. It should be noted that the following notation

is consistent with the notation used in deriving the

equations for an isolated blade's flap-lag motion.

One new term introduced by coupling the fuselage to the

rotor is the pitch effect on the blade's rotation; i.e.,

there is a "rocking* motion of the blade due to the body's

pitching motion. This can be added to the angular velocity

of the non-rotating hub-fixed system (considered to be

inertial in the previous chapter). The resulting angular

velocity becomes

0b/I =nh - 1 + Ab + &jh (3.72)

Referring to Eq (2.11), the absolute velocity of a mass

point on the blade, expressed in the hub-fixed rotating

* system is then

r(cf3gC + f~sf3cC + nsC - t&sj3cc)]

{ }h r(, cc C) 
(3 .7 3 )

r (0cOcC - egr Sc - &COCO h

The Lagrangian becomes, for the main rotor,

I "21 I 2_1 (3.74)+ 20 c(3+ 20 PC( sc 80- 20 nft( a( I + 2I C+ 2 - kr? -k(C (374

* where the body terms are now included. Note that the
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translational kinetic energy of the airframe is included in

the Lagrangian. Because , (, and C do not appear in this

term it will not contribute any components to Lagrange's

equations of motion.

Assuming the angles &, (, and C are small and neglecting

. terms higher than second order, Lagrange's equations of

motion are:

.1- -o: = Si
* -+2~~O~*c.1/+ (0 2 + k(/I1L( = Q' / 1 (3.75)+ 2n i('f + )M( (?

C) - 2m0 + 0 + a C/I + k C(/I = Q /I M  (3.76)

I. - 0 MOC - 0C( P) /I M+ Ic) = Q/[I M+I]) (.7.- ,

..

The trim equations will not change. Differentiating the

above equations by the main rotor's azimuth angle, W., yields

the following perturbation equations of motion:

A( A, + 2f3oA( + CoAe + 2p( 2Q +pm= ',' (3.78)

2f +32 ( A& p 2C3 -2 2)(3.79)

C A' -(3 (' +IAQI0 (380

a 
0

Note that, by including the pitching terms, the

perturbed equations of motion are indeed altered. In order

to generate the perturbed equations in the form of Eq (2.82),

S. Eqs (3.78) and (3.80) must be simplified:
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a +. I, +, (I M+, I J (,+21] )
1I I I c  0

m c m c a

fIm 21 + 1 I mI +I cl2
Cc 2 c c P (3.81)

'. ,, _ 12 (AQ +A 19 -I-"(og + (Co-2]P'
C" C

c m

- -- (3.82)

c c

Eq (3.82) is the moment equation for B1 and includes the

contributions of each blade's flap and lag motions on the

airframe. This equation replacep Eq (3.53) when coupled

rotor/fuselage dynamics are considered. However, when the

uncoupled dynamics are to be examined, Eq (3.53) is used as

the moment equation for B 1.

The coupling terms associated with the aerodynamic

forces must also be calculated. Referring to Figure 8,

changes in the helicopter's velocity and angle of attack do

indeed influence the aerodynamic forces acting on the

C helicopter blade through the advance ratio, ., and inflow

ratio, X. These terms can be expanded to be:

P = Mo + APcoC0 - A1 sino0 (3.83)

X = X + Apsin + Al cosa (3.84)

It will be assumed that changes in the induced velocity

1 due to small changes in V and o can be neglected. Hence,
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A= Axesina 0 + C0 (3.85)

A01 = AXCosct - Aasinot (3.86)

If Co = 0, then perturbations of the relative normal and

tangential velocity components can be expressed an (10:880)

AU = ]Oo(0COBWAP - AX] (3.87)

AU = lBsinwAp (3.88)
T

Using the perturbed values of the elemental aerodynamic

forces, A(dF ) and A(dF ), found in Eqs (2.76) and (2.77),

and integrating over the length of the blade, expressions for
I I

AQ and AQ may be determined:

* AQ/ (I c9) Y ~[~t + (lI]d tAX+.{t 3 P ecw- (1+ Cad)t 5tfocW

+2t eswe.i(1+d 35}AM] (3.89)

AQ~M/ 312 = 5J{3+ AX+(3ocW(t3+e 5)

+aW 2tCd- (3.90)

where t 3 and t 5 are given by Eq (3.71).

The expression for AQe, previously defined in Eq (3.53),

in repeated below to show only the contributions from A and

P 0 o: .t
a a V V (X 0 0)YMOvZ mv z tV x V
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+ M K L T Z n o 0 x c a .) + L , f x n o0+ 3 'Z c a 0

+M +Z H +tH t+t Y t oa (3.91)
y m t x t i

Combining the results of Eqs (2.84)-(2.86), (3.79).

(3.81). (3.82), and (3.89)-(3.91) yields a matrix in the form

x(w) = A(w)x(w) , and includes not only the perturbations of

* A/? and AC but also the coupling terms resulting from A., AcI,

A&, and A . For a single blade, this matrix is as follows:

0 0 0 01 0 0 001[0O0001.O0.
= c 0 0 0 x (W)+ e30 0 e x2 (W) (3.92)( 31 c32 c33 c34 1 e31 e32 0 e34

c 4 1 c 4 2 C 4 3 c 4 4 J Le4 1 e4 2 0 e 4 4 J

V where [referring to Eqs (2.85) and (3.67) as required]

c 31 1 a 31
0% c

= .tIm+Ic 3

c 32 1 a 32
c

C a + m
33 I 33 - oc c

I
C 3 4 = a 3 4 +1o

c c

~ ~ ~g 2eI +.i [{ 3 I + C- t o+-{o It lC-dte31 2%

+s 2t 5 +]]]7

I7



e3 2  217 L t3+ d) JI 5 )Ca.y CW 1.c71 3 + [1 +2di]t 5)

-ew (2et +1 I+ +~d] t 3 )a]+

c 41 a 41(3.93)

c 42 a42

c43 a43

c44 a44

e fe + act re(2t +rd 4  t ccx
e4  5 1l531 o-focWvLt5I3JsgWt5a 2e Jo 0

e4 2 = [{et5 +t3}c+f(?c?4t 5 +t 3 .5a 3w[2t5  2

The expression for A79 will also be modified so that

=[K 1 112 f13 f'14 ] x (W)+[9gii g1 2 0 91 4]x2 (W) (3.94)

* where

M3 2

fl = dl

f12 =d12

C f~13 =d13 +IT0 2
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f 14- I-- o (3.95)
ec

+sp (2et +1. [i+Cd] t)}c] +a4 l

= 2L"[{et + (I+a-]t 5 }ct 0+od{- o~c t 3 .[1 +] t

S -aw~~~ (2et [ a~ t3] }so] +a42

Sg1 a4 4-1
C

If the helicopter's operating envelope is to be

expanded, advance ratios greater than 0.50 must be

considered. This means reversed flow should be accounted

for. As was previously discussed, Sissingh (8) described

three different flow regions a blade encounters. In the

first region, called normal flow, the air approaches the

blade from the leading edge, while in reversed flow the air

approaches from the trailing edge. In the mixed flow region

part of the blade experiences normal flow while the other

part encounters reversed flow. The aerodynamic flapping and

lagging moments describing normal flow were already defined

in Eqs (2.37) and (2.38); the moments for reversed flow are

simply the negatives of the normal flow moments. All that

remains is to derive the aerodynamic moments for mixed flow.

( According to Sissingh, the boundaries of the mixed flow
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IL.

region occur from w = iT to W = n + £ and from W = 2n - c to Wi

= 27, where c = sin- (l/u) (8:57). Hence, the moments Q P
* ,

and QC are modified to be

R Rps i nw

S fr cosCdF 2 cosdF (3.96)

*0 0

R Rjsin
C, I=dF - 2frdF (3.97)

v 0 0

If the above equations are solved, the equations of

motion for the blade elements in the mixed flow region will

be modified from Eq (3.93) to be

=c, + 9 iW/iIt---O(37 PSW--0 t3)

31 31 o6 3 -

€.2

'3 2 = c 3 2 -12a°i "jtt+4

1 4 4

c3 3 =c3

= + a 1 p+It 3  (3.98)

, c3 4  c 3 4  6 3  (

-e.p t2w t -2 W)

22 2 1 2 + C
c42 c - 1. w =- lu t 5 t+ t 3  O t4-Npt4aC41 41 (-2-emaW+3o oa3

c 4 3  c 4 3 -rp 9W (1edW

|so
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C4 4  C 4 4 +/ 3 - a

The coupling terms in the D matrix [Eq (3.66)] will also

be modified to be, in the mixed flow region,

d~ l = 11 m- 1 'c o + ojs 0d 12 = 2 b;c ~ + bja0
d1=d13- lmbco+ b s8t°

* (I I ]
=d - bca + beac °

d 1 2 =d 1 2 +- b ba°

21 mibl' 20 6 o1

d 22=d -F "mbao +baac 0)(.
d ; 3 = d2 m b; OO' - 7 c x0

d13 13 3 + b oj

d = -F b;/c + b'c11td14 d14 o~40 80

d 44=d 44+F baaz~ -M+b 12

d21 = 21 mlr b o 5 bCoj

d2 = d2 +F baa - ba 5 (3.99)

* (bI *
d2 : d2 + r 1 ba - ba °

24 24 l~ - b 8 oj

41 : 41 Imi /m + b

42 4 {Zmb2,/ m )
d4 = d4 +f lzbz + b 50

-43 = 43 +mF m3 mb /R llj

d44 = 44+ 1 /R+b2
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where

-PPB wcw{32opopSw+(3t 3 t 4 1]

b2= -Pew [ifwfe (2 t3 t4 .3100 +2pgw (P t 3 -at 4 )1}

+0? cw{2et AP8w+2t t +1 2 2w}

2 21

b 4= -p8 a i w[je3 JBI~pcI3 1

2 2 ({e2 C} {t]

b, = pj a JrfIo es+tI...t~l

b +1 2 2
6psw 12et4 /JW+ 2 t t :"' " aW)

b 3 3~S

2 2 (52 4 awtt+ ~2
10 awmg~ ) 310
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b, = NPaWCPle,.*s+2t1
12 =

b4 = -Pew -0 o ? (+oPsW+ 3 )-t 4}+cWfe(t 4-fot 3 ) si

+4t t + fld22_
3 4 3oaPSJ

b P22+ psw2--{3 (is,+c-pew+2ti
14 30 1 3 ))

Note that the D matrix terms for the tail rotor will be

modified in a similar manner.

To simplify the helicopter's equations of motion, the

tail rotor can be neglected. Then the equations of motion of

an N-bladed coupled rotor/fuselage helicopter may be

expressed in the form of Eq (2.82), where x(W) is defined in

Eq (3.62), and

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

c3 1 c3 2 c3 c3 4 e3 1 e3 2  0 e34

A(w) = c42 c43 c44 e41 e42 0 e44 (3.101)

dl d12 d 3 all a12 a13 0

d21 d22 d23 d24 a21 a22 a23 a24

0 0 0 0 0 0 0 1

f1 12 f13 f1 4 gll g; 2  0 g14

where the f terms also account for reversed flow [refer to

Eq (3.95)].

Note that the terms in A(w) have been previously

defined, and the dimnsions of this matrix depend upon the

83



number of blades in the main rotor. For instance. if a

four-bladed main rotor is specified, then the state matrix,

x(w)• will be a 20-column vector. where the first J0

components are the flap and lag angles and rates of each of

"j the four blades. The last four components will consist of

the helicopter's airframe terms. The coupled rotor/fuselage

equations reduce to the equations for the blades alone and

the helicopter's body (excluding the rotor) alone when the

coupling terms are ignored. The coupling terms are included

to account for the helicopter body pitch, velocity, and angle

of attack changes being considered in the blade's equations

iof motion, as well as the rotor blades' flapping and lagging

changes being included in the helicopter body's equations.

Verification of the Helicopter's Equations of Motion

The equations of motion have been derived for a coupled

rotor/fuselage system; however, they still need to be

verified. Other studies have derived and examined the

equations of motion for a coupled helicopter, but, in many

cases, it is not feasible to make a direct correlation

between those studies and the present effort. For instance,

Bousman (28) investigated the aeromechanical stability of a

helicopter on the ground and in hover. Friedmann and

Venkatesan (33;39;40) and Straub and Warmbrodt (31) presented

analytical models to examine the aeromechanical stability of
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a helicopter in ground resonance. Rutkowski (32) and Hodges

(35;38) modeled their systems using finite element theory.

On the other hand, Johnson provided an analytical

examinination of a helicopter's motion both in hover and in

forward flight (2:774-843). His analysis can be directly

correlated with the equations derived earlier in this

chapter, and therefore warrents closer examination.

Because a helicopter's flying qualities are different in

hover and in forward flight, Johnson analyzes the two regimes

separately (2:775). For hover, Johnson assumes the aircraft

has complete axisymmetry and separates the vertical and

longitudinal-lateral dynamics to simplify his analysis. In

addition, he assumes that the longitudinal and lateral

dynamics are also separable and only the low frequency

dynamics of the rotor are used, since the motion involved in

helicopter flight dynamics is slow when compared to the

rotor's motion (2:775;779). For the case of longitudinal

dynamics, two degrees of freedom exist in hover: pitch; and

longitudinal velocity. For an articulated rotor with no flap

hinge offset and no pitch-flap coupling, the helicopter's

pitching moment is due only to the in-plane hub force.

Consequently, the system's characteristic equation generates

three roots: a negative real root due principally to the

main rotor's pitch damping; and a long period, mildly

unstable oscillation resulting from the coupling of the pitch

and longitudinal velocity (2:787-793).

Johnson also examines a helicopter's performance in
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forward flight, which is significantly different from the

hover case. As he states,

Forward speed introduces new forces acting on the
helicopter: centrifugal forces due to the rotation of

-' the trim velocity vector by the angular velocity of the
body axes; aerodynamic forces on the fuselage and tail;
and major rotor forces that are proportional to the
advance ratio [2:822].

Again, Johnson assumes the longitudinal and lateral

dynamics can be analyzed separately. In forward flight,

three longitudinal degrees of freedom exist: longitudinal

velocity; pitch attitude; and vertical velocity. As in

hover, Johnson obtains the rotor forces and moments acting on

the helicopter from the low frequency response; the rotor

dynamics do not add degrees of freedom to the system (2:824).

There are three primary influences the helicopter's

longitudinal dynamics: the pitching moment due to vertical

velocity; the vertical acceleration due to pitch rate; and

the helicopter's longitudinal inertia (2:829). In hover the

system's characteristic equation typically yields two real,

negative roots for the vertical and pitch moments and a

$ complex conjugate pair in the right-half plane resulting from
( the longitudinal velocity and pitch coupling. Without a

horizontal tail, the main rotor produces a net angle of

attack instability. As the velocity increases, the vertical

mode becomes more unstable while the pitch mode becomes more

Sstable. For the oscillatory mode, the unstable period

increases and the damping decreases. However, with a large

enough horizontal tail, the helicopter, in forward flight,
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can have static stability with respect to the angle of

attack. In this case, as the velocity increases, the

vertical and pitch roots become stable oscillatory modes with

a short period and high damping. In addition, the

longitudinal velocity modes are also moved into the stable

region and both the period and damping increase (2:829-831).

Unfortunately, Johnson's analysis does not consider the

effect of coupling the airframe and rotor blade's equations

of motion, which, incidently, increases the number of degrees

of freedom in the system. However, it is possible to verify

the uncoupled equations of motion by comparing the fuselage's

-. responses to Johnson's analysis. Since the equations of

motion for a single rotor blade were already verified in

Chapter II, the coupling terms will be the only parts of the

equations of motion which cannot be directly verified.

However, before the equations can be ve-ified, the

parameters of a typical helicopter with a single main rotor

must be chosen. The particular helicopter modelc' is the

Rotor Systems Research Aircraft, or the RSRA. An abundance

of data for this helicopter is readily available from various

. sources (55;56:446-7;57:v;58:18.1-18.24;59:42-52;60;61;208-

209).

The parameters used to model the RSRA are summarized in

Table I. Some of the parameters have been extrapolated from

the 1/lth scale model of the RSRA. while others have been

calculated using formulas previously mentioned. Table II

Isummarizes the aerodynamic coefficients extrapolated from
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TABLE I

RSRA Parameters

FUSELAGE

maximum speed (m/s) 82.25536

length (m) 21.52

chord (distance from cg to moment center, m) 0.2286

wetted body area (m 2 ) 135.809

mass moment of inertia, (kg-m ) 98102.416

frontal area (m ) 1.032
S

TAILS: HORIZONTAL VERTICAL

area (m ) 3.29 10.584

x (M) 13.995 11.624

y (M) 0.0 0.0

z (m) 3.512 1.758

distance from cg to tail moment center

ROTORS: MAIN TAIL

number of blades 4 4

radius (m) 9.450 1.616

chord (m) 0.648 0.306

weight of a single blade (kg) 123.391 9.954

angular velocity (rad/sec) 22.579 132.068

mass moment of inertia (kg-m ) 3861.722 4.585

solidity (a) 0.0873 0.241

Lock number (r) 10.300 3.500

x (m) 0.0 11.252

y (M) 0.0 0.670

z (m) 2.108 1.385

distance from cg to rotor hub
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Table II

RSRA Aerodynamic Coefficients

LIFT MOMENT

CL  0.13751 C 0.00000
* 0

CL 0.27510 C -0.85944

CL6e  C.05813 Cm6e  -0.04125

data contained in the above mentioned souces. The main rotor

has four blades and is articulated, without any hinge offset;

-'" hence, there is no hub moment transmitted to the helicopter

(2:150;788).

Using this helicopter model, the vehicle's performance

is evaluated for various flight conditions. To verify the

equations of motion, the blade equations are first uncoupled

from the body and the results compared to those obtained with

the isolated blade flap-lag equations. As anticipated, the

results are identical. In addition, for the four-bladed

helicopter, the results mirror those reported by Calico and

Wiesel when they examined a two-bladed flapping rotor

(43:62). That is, when the body and rotor are uncoupled, the

6- four pairs of Poincare exponents associated with each of the

blade's flapping modes are identical. Similarly, the

Poincare exponents associated with the lagging modes are

identical. Figures 11(a) and 12(a) show the real parts of
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the uncoupled flap and lag modes as the velocity is increased

from hover through 300 m/s (p = 1.861). For these cases the

blade natural frequencies are set at p = 1.00 and w = 0.50,

and C( = 0.000.

Both figures show that initially the flap and lag modes

can be viewed as four identical pairs of complex conjugate

Poincare exponents. The flap modes split off as two sets of

roots, each of which consists of four identical real Poincare

exponents. Note that Figure 11(a) shows one of these sets of

roots becoming unstable at very high speeds. At low speeds,

the lag modes are also four identical pairs of complex

conjugate Poincare exponents. Once again, the modes become

real as the velocity increases, but, according to Figure

12(a), the modes become increasingly stable oscillations at

high speeds.

The uncoupled flap and lag modes can also be examined

when reversed flow is considered. Examination of Figures

1"
11(a) and 12(a) shows that reversed flow does not

significantly alter the uncoupled flap and lag modes.

However, reversed flow does stabilize the flap modes at the

upper end of the velocity spectrum. Further, the range of

velocities where the lag modes possess real Poincare

exponents (rather than complex conjugate pairs) increases

when reversed flow is added to the system.

SNow that the uncoupled blade flap and lag motions are

known, the uncoupled motion of the rigid airframe needs to be

verified. To this end, the airframe's roots must be
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calculated at varying velocities and compared with Johnson's

observations. Consequently, the helicopter's uncoupled

longitudinal dynamics are examined in hover and in forward

flight.

In hover, the airframe's characteristic equation

generates four roots. Two real, but stable, Poincare

exponents correspond to Johnson's roots for the helicopter's

vertical and pitch motions. The other two roots represent an

unstable oscillation resulting from the coupling of the pitch

and longitudinal velocity. This again mirrors Johnson's

observations (2:793;829-831).

Forward flight can be examined by looking at two

different scenarios: a helicopter with and without a

horizontal tail. Johnson's analysis of the helicopter in

forward flight is based on several assumptions which simplify

the system's characteristic equation. Specifically, the

helicopter's forward velocity stability derivative [a21 fromk21
Eq (3.67)] is considered to be very small. In addition, the

pitch moment stability derivatives are directly proportional

to the corresponding longitudinal force derivatives: a41 =

-MRmZza I I /I c  a42 -MRmIza 12/1 c  a 44 -MI za 14/1 c

[again referring to Eq (3.67)] (2:788;829). Using these

assumptions, the uncoupled airframe's characteristic equation

mirrors Johnson's equation (2:829), and, consequently, the

responses are similar. Figure 13 shows the root locus of the

longitudinal roots, with and without a horizontal tail, as

the velocity is varied. Without a tail, an increase in
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!"

forward velocity tends to destabilize both the helicopter's

vertical motion and the longitudinal velocity. On the other

hand, the horizontal tail chosen for the RSRA does cause the

vertical and pitch roots of hover to transform into stable

oscillatory roots as the velocity increases. Further, the

'* oscillatory roots representing the coupling between the

helicopter's pitch and longitudinal velocity become more

' stable with increasing speed. Once again, these results

mirror Johnson's analysis.

Including all the airframe contributions in the system's

characteristic equation does not significantly alter the

velocity root locus, as shown in Figure 14(a). The only

noticeable change in that, when the tail is added, the modes
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representing the coupling between the pitch and longitudinal

velocity do not stabilize, even at very high velocities.

Figure 14(b) plots the real parts of the uncoupled airframe

modes as a function of velocity.

It should be noted that adding reversed flow to the

system does not significantly influence the airframe's roots.

However, Figures 15(a) and 15(b) do show that, at very high

speeds, adding reversed flow to the system does stabilize the

modes representing the coupling between the pitch and

longitudinal velocity.

As the above discussions illustrate, the uncoupled

airframe does mirror Johnson's analysis as the velocity is

varied. The final step, then, is to add the components which

couple the airframe and the flap and lag terms of each blade

on the main rotor. With p = 1.00, 0.50, and

0.000, the coupled rotor/fuselage system's roots will be

examined as the velocity is increased from hover through 300

mis.

The velocity root locus of the coupled body modes,

Figure 18(a), differs significantly from the velocity root

locus of the uncoupled airframe with reversed flow added to

the system [Figure 15(a)]. In addition, Figure 16(b) shows

that the real parts of the coupled airframe modes differ from

the uncoupled cases [Figures 14(b) and 15(b)] as the speed

increases. Now, recall that, without any coupling terms in

the system, the vertical and pitch modes generated stable

oscillations as the forward velocity increased. However,

94

,1%

......



I
J

,% 
8- 0.15 -

"0.05 
oREL. ROOTS

6

-. 0.05

,%,' 
-0. 15

-6.0250 1.0 1. 0 is
0

* - 6 . 0 0 b -1 . 0 0 I. 5 o

L.- -0.25

0.* -045

% - 6 - - 0 .5 5 -3 0 0
0. 0 1 0 00oo 20oo0 o000

•"ICEUOCIER VELOCIY (M/IS)
'I.

(a) Velocity Root Locus (b) Modes vs. Velocity

Figure 14. Uncontrolled, Uncoupled Body Modes; No Reversed

V. Flow

' 6.0 0.15

S0.0oREAL ROOTS, 
.---,0.05

C5

* -0.05

* 0

-0.15

I.;'" 2 ' " -4 2 . .

t.- -0.25
-2.00

-' - -035

.- 0.45

-8.0 -- 0.55
O0.0 1 .00 200.00 300.00

HEULCOPTER VELOCrTY (M/S)

(a) Velocity Root Locus (b) Modes vs. Velocity

(I. Figure 15. Uncontrolled. Uncoupled Body Modes; Reversed Flow

* 95



5.00

2.00

3.00 6:

1.00 1

000

01.00

-3000

-5 DO - -3.00
- c6.0.o0 200.00 300.00

HEICOTER VELOCiTY (M/S)

(a) Velocity Root Locus (b) Modes vs. Velocity

Figure 16. Uncontrolled, Coupled Body Modes; Reversed Flow

this is not the case when the coupling terms are added. The

hover roots are nearly the game, but now, as the velocity

increases, the root representing the helicopter's vertical

motion becomes more stable while the pitch root becomes less

stable. In addition, the unstable oscillations in hover

become more unstable with increasing velocity. This trend

also differs from that exhibited by the uncoupled modes

representing the coupling between the body's pitch and

longitudinal velocity, for those modes became more stable as

the speed increased. Finally, notice that, at higher

velocities, the pitch mode and one of the modes representing

the coupling between pitch and longitudinal velocity generate

a slightly unstable oscillatory pair of roots for a bit

96



before becoming unstable real modes again.

The coupled flap and lag modes (Figures 11(b) and 12(b)]

also differ from the uncoupled modes [shown in Figures 11(a)

and 12(a)] as the velocity is varied. Figure 17 shows the

velocity root loci of the eight flap modes. The magnitudes

of the imaginary parts of each of the lag modes remain at

approximately 0.500 throughout the velocity spectrum

examined. At low speeds, Figures 11(b) and 17 show that the

eight coupled flap modes are very similar and mirror the

uncoupled modes. However, as the speed increases the coupled

modes diverge. In fact, only one pair of modes is real above

80 m/s. Further, at very high speeds, two other modes become

unstable. The remaining four modes consist of two pairs of

stable oscillatory roots through 300 m/s. As for the lag

motions of the four bladesFigure 12(b) indicates that the

coupled lag modes remain stable complex conjugate pairs. Six

modes are oscillatory roots similar to the uncontrolled case

for low speeds. Two roots, however, differ drastically from

the other six roots as the velocity is increased. While

Ustable throughout the velocity spectrum analyzed, these two

Poincare exponents are much more stable (except at very high

speeds) than the other modes, even in hover.

Clearly, coupling the flap and lag motions of the main

rotor's four blades to the helicopter's airframe (including

the horizontal tail) does indeed influence the results. For

this analysis, the coupled equations of motion will be used

for the remainder of this study.
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IV. Modal Control Theory

Once a set of equations of motion have been derived and

the stability regions determined, attention can be focused on

developing a control technique which reduces or eliminates

the unstable regions. The modal control theory used in this

study is summarized below.

Floquet Theory

The stability of a system of linear equations with

periodic coefficients may be determined using Floquet theory,

which only requires the knowledge of the state transition

matrix at the end of one period. Because Floquet theory

involves no assumptions beyond those used in deriving the

equations of motion, the accuracy of its results depends only

upon the computational procedures used (7:26-27).

Understanding modal control theory for periodic systems

requires a brief review of Floquet theory. The ensuing

development follows closely that found in Calico and Wiesel

(43;62).

Consider a set of linear ordinary differential equations

of the form

x(t) = A(t)x(t) (4.1)
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where the matrix At) is periodic with period T. For

convenience, the independent variable is changed to W, and Eq

(4.1) becomes

X (W) =A(W)x(W) (4.2)

where A(W) = A(w + 2n) The solution to these equations

can be written in terms of the state transition matrix,

0 (W,0), as follows:

x(W) = 1(,,O)x(O) (4.3)

where Ik(W,0) satisfies the matrix equations

"-. t~~~ 1v,0) = A t O

(4.4)

4? (0,0) = I
"

A direct result of Floquet theory is that 1(,0) can be

written as

4(w,01 = F(w)eJWF-1(O) (4.5)

where the matrix F(w) is periodic with the same period as

*'" A(w), and J is a constant matrix which can be expressed in

the Jordan normal form.

The diagonal elements XA of J are Poincare exponents.

Note that the system's stability is governed by the Poincare

exponents alone, since F(w) is periodic and therefore

bounded. That is, if all the real parts of the X are

negative, the system is stable. However, the system is

1.
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unstable if any of the Poincare exponents have positive real

parts.

Now, because the knowledge of the state transition

matrix over one period determines the solution everywhere,

solving for all time thus requires solving the matrices J and

F(W). Since F is a periodic matrix, F(O) = F(2,i , and

evaluating Eq (4.5) at the end of one period yields

1(2z.0) = F(O)e 2JF-1 (0) = F(0)AF' (0) (4.6)

where A consists of the eigenvalues of 0(2n.0).

Thus, F(0) can be referred to as the matrix of

eigenvectors of the monodromy matrix §(2n,0). In addition,

the eigenvalues, or characteristic multipliers, of 0(2n,0)

are related to the Poincare exponents by

AA = exp(2A) (4.7)

In general, both A and X are complex quantities; thus

AA AA +4A A (4.8)

X = ( + W 14.9)(D

from which

=I n [(A 1"/2] (4.10)A = r -I A A I

1 -1

= -tan (A I/A4 ) (4.11)
A 2r AI A

Constructing a complete solution to Eq (4.5) requires
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the knowledge of the eigenvector matrix F(W) over one period.

f Substituting Floquet's results from Eq (4.5) into Eq (4.4)

results in

F (W) = A(W)F(w) - F(w)J (4.12)

The initial conditions for this differential equation

are available from the eigenvector matrix found in Eq (4.6).

Hence, by numerically integrating Eq (4.12) over one period,

F(W) can be found throughout the entire period.

Even though F(W) and J can be calculated, the results

Cmay be inconvenient if the matrices are complex. If this is

the case, both matrices can be rearranged to make them real.

F(W) should consist of column vectors f. which are either 1)

the real-valued eigenvectors associated with the real

Poincare exponents, or 2) two columns representing the real

and imaginary parts of the eigenvector, f. real and f .1*r"alimag

* associated with a complex conjugate pair of Poincare

exponents. The J matrix will consist of either 1) diagonal

entries of the real Poincare exponents, or 2) diagonal blocks

of the form

(4.13)

uI--
for a complex conjugate pair of Poincare exponents (62:672).

Now, it is often necessary to find the solution to the

inverse eigenvector matrix. F (w). Rather than numerically

inverting F(W), which is expensive and leads to round-off
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error (62:672), F- (W) can be calculated by differentiating

FF - I = I and substituting Eq (4.12) into the result,

yielding

[F- (p]W -F (W)A(W) + JF-I(W) (4.14)

This equation can also be numerically integrated, and

the results reduced to a convenient, usable form by harmonic

* analysis (63:108-109).

By introducing a set of modal variables, r, such that

X(W) = F(W)h(W) (4.15)

the periodic system of Eq (4.2) can be written as

W (w) = F-(W) AIvIF(w) - F (w)I Y1() = JV0(W) (4.16)

Hence, the periodic system can be reduced to a

constant-coefficient system by using the eigenvector matrix

* F(W) as a periodic transformation (62:672).

Control of the system can be accomplished by adding

state variable feedback to change the unstable Poincare

exponents. Consider the standard control problem

x (W) = A(W)x(W) + B(w)u(W) (4.17)

where u(W) is the control vector and B(w), a matrix which is

periodic with the same period as the fundamental dynamical

system, determines the control distribution.

Assuming full state feedback,
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Su(W) Klvlx(W) (4.18)

where K(W) is the gain matrix. Thus, Eq (4.17) can be

written as

x c 1W) = [A1 + B(WIK(W )Jx(W) (4.19)

where x is the closed-loop state.

By introducing the modal variables into the feedback

*control system of Eq (4.19), the following results:

'n' () = J(W) + F- (W)B(v)u(v()

or (4.20)

W (W) = + F-1(w)B(w)K(w)F(w)] C(W)

If K(w) is chosen to be periodic with the same period as

Eq (4.2), then Eq (4.20) is a Floquet problem. To insure

that the closed-loop system meets the desired specifications,

K(W) must be calculated. Calico and Wiesel (43;62) have

developed a modal control technique which generates the

required K(w) by changing the unstable Poincare exponents and

leaving the others unaltered. Both scalar and vector control

are considered.

Scalar Control

Consider first a system of four equations of motion

where either one pair of complex conjugate Poincare exponents

or two real Poincare exponents are unstable. This situation

occurs when an isolated helicopter blade experiencing
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flap-lag motion encounters unstable regions at various

advance ratios, as was discussed in Chapter II. The modal

variables may be numbered so that 71 and 772 are the two

stable modes while n3 and 74 are the unstable modes. The

" control can be given by

u(W) = iT (W)(W) (4.21)

0 where kT(W) is a row matrix of modal feedback gains, and is

given by

=[k 1 W, k 2 (w), k 3 (w), k 4 (W)] (4.22)

The modal feedback control system in Eq (4.20) now takes

the form

.c (W) = J + g(W)k(W) ] c (W) (4.23)

where g(w), a periodic modal controllability matrix, is

g (W) = F - (w )  B(w) (4.24)

Modes 7c (W) are controllable if the corresponding g,(W)

are nonzero.

Assuming XI, 2 and X3.4 are the pairs of the Poincare

exponents associated with 71,2 and 734' respectively, and

I' assuming, for the present case, that kl(w) = k2 (w) = 0, Eq

(4.23) can be expanded to be
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L [ ~ ~ k~g k~g

(W) 2 ~2 3g2 2 0(W) (4. 25)
0 0 3 +k 3 93  3 k4 93

[ 0 0 4 +k 39 4 Z4 +k 4 94

B By inspection, the Poincare exponents X1,2 are the same

as those of the open-loop system, while the coupled equations

for the modes 7)3 and 7)4 determine the Poincare exponents for

X 3 .4 - The equations defining 7)3 and Y?4 can be decoupled from

Eq (4.25) and separated to form the two-dimensional system

T- " ) = +3k3 3+ ] 7) IV') (4.26)

4 k3g4 t4+kg494 (

It is desired to choose gains k (1) and k 1(w) such that
34

the Poincare exponents X 3 are stabilized. First, however.

gl) has to be expressed in a convenient manner. Clearly,

this function is periodic; it may be expanded in a Fourier

* series as (64:81-82)

(V) = g + g cos(nW) + g.in(nW) (4.27)

n1

where the Fourier coefficients are obtained from g (W) as

follows (2:153-154):

2 n

1 r
0

21r

gi= Jg.(w)con(nw)dw (4.28)
0
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F2rr
p i= 0gi(w)sin(nw)dw

Consequently, assuming that k 3 and k 4 are either

constant, or can be expressed in the form

k(W = k~sin(nw) or k.(w) = k.cos(nw) (4.29)

Eq (4.26) may be written as

W7c(w) = A1' c(w) + A2 (w(r ( W) (4.30)

where A is a constant matrix, and A2((w) is a purely periodic

matrix. Even though the gains k3 and k4 may be chosen such

that A 1 has stable eigenvalues, the stability of the system

is not assured (02:673-674). However, Calico and Wiesel

(43:61-62;62:674) developed a technique which can be used to

set the sum of the real parts of the two new roots to any

desired value. This technique, which determines the required

values for k 3 and k 4 , is reviewed below.

Defining D(W) = det[E(W,0)] and tr(°) to be the trace,

it can be shown that (62:674)

D (w) = tr(A(W)) DW) (4.31)

This first order ordinary differential equation may be

integrated by means of an integrating factor to yield

D(Y/) D(0)exp{Jtr (A(W))dw 4.2
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Evaluating Eq (4.32) at W = 2n and recalling that the

determinant of a matrix is the product of its eigenvalues,

det [(2n.O) = 1A. = expI tr (A (W) dW (4.33)

But, the eigenvalues of the monodromy matrix are related

to the Poincare exponents by Eq (4.7) no that

2rr

x 2 ~-tr(Aw))dw (4.34)

i=3 0

Substituting for A(w) from Eq (4.26) yields

27r

"3 +t 4 t3+4+i J [k3 (W)g 3 () + k4 (W)g 4() ]d (4.35)

0

The products k3 (W)g 3 (W) and k4 (W)g 4 (v) can be assumed to

contain constant terms. For instance, if k is constant and

" g3 ( ) has a constant term in its Fourier expansion, k3 93 (W)

will have a constant term and a series of periodic terms.

If, on the other hand, k3 (W) has the form of Eq (4.29), the

product k3 (W)g 3 (w) will generate a constant term via the

standard trigonometric identities (62:673). Thus, Eq (4.35)

becomes

+ g4 = + + [k3g3 o + [k4 4 1o (4.36)

where [k3 g3 ] and [k4 94 ] are constant values.

Note that if only one root, say Z3 is unstable, Calico(. ,

and Wiesel (2:673) showed that the root shifts along the real
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axis as a linear function of the gain k3

Z = [k3 g3 1 (4.37)

For stability it is necessary that the sum of the real

parts of the desired Poincare exponents in Eq (4.36) be

negative. Sufficiency, however, requires that each Poincare

exponent has a negative real part. Eq (4.36) can be used to

define pairs of k3 and k4 to yield a specific sum, and, using

these values, the closed loop system can be solved by Floquet

analysis to find the actual values of t3 and t4'

Several methods exist to choose values of k 3 and k 4 . In

the case where g3 and g4 have constant, non-zero terms g3o

and g4o' respectively, in their Fourier series, and k 3 and k 4

are chosen as constant gains, one method is to simply chose

values of k 3 and k4 such that Eq (4.36) is satisfied.

Values for k3 and k 4 may also be found using the

equations

k 3 = ( '- t3)g 3 o k= (4 - t4 )/g 4 o (4.38)

A third method is to choose a value for k 3 and solve the

following equation for k4:

k4 =1[ - 3g3.]  (4.39)94o

where T = t3 + t4 - t3 - t4

Different, non-constant gains may be used to select

higher-order coefficients from the Fourier expansions of
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g 3 (W) and g4(W). For instance, if k3  is chosen to be a

constant, and k4(w) = k4 sin(W) , then the analogue of Eq

(4.36) is

1k

k3 g3 o + 1k4g4k (4.40)

where g4 1 is the coefficient of the first sine term in the

1

Fourier series expansion of g4 (W). Similarly, for k4(W)

0k 4cog(W)

T= k3 g 3  + k4 g 4  (4.41)

where g4  is the coefficient of the first cosine term in the
1

Fourier series expansion of g4 (W). The values of k3 and k 4

can still be calculated with one of the three methods used

when both k 3 and k4 are constant.

In terms of the physical coordinates, x(W) and u(), the

control required to change the two unstable modes is given by

u() = [k3 (W)f 3 (W) + k 4 (W)f 4 (W) ]X(W) (4.42)

where f3 (w) and f4 1 (w) are the third and fourth rows of the

F- (w) matrix, respectively. The gains k3 ( ) and k4 (W) are

based on the Fourier series for g3 (W) and g4 ( ). as

previously discussed.

To summarize, designing a scalar controller to shift a

pair of unstable roots requires the following steps:

1) through numerical integration calculate the state
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transition matrix at the end of one period to determine

the Poincare exponents and the associated eigenvectors

2) choose the desired Poincare exponents

3) form the controllability matrix, g(W), and the

associated Fourier series expansions

4) choose the gains k.( O) as either constants or in

the form of Eq (4.29) and determine their values with

one of the three methods previously described

5) calculate the control using Eq (4.42), and insert

it into the feedback control system of Eq (4.17)

6) integrate the controlled system's state transition

matrix for one period, and calculate the new Poincare

exponents to determine the individual root locations.

7) If the individual root locations are not

acceptable, pick another pair of values for the gains

which satisfy Eq (4.36) and repeat step 6.

Using the technique summarized above, two unstable

Poincare exponents can be shifted into the stable region

, while the other exponents remain the same. Even though this

analysis was accomplished using a fourth order system of

equations, the sum of an arbitrary number of roots may be

set. However, as the number of roots increases, determining

the gain is complicated. Consider the coupled rotor/fuselage

system discussed in Chapter III, where the dimensions of the

state vector, x(w), are of order 20. It is entirely possible

for this system, when uncontrolled, to generate more than two

unstable modes. If m is the number of unstable modes, then
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k( ) can now be expressed as

k(W) [k1 k 2 9 .... kIO,...o (4.43)

K' If the trace rule is again applied, Eq (4.36) becomes

0~ E kg,3) (4.44)

j=1

Again, for stability the sum of the real parts of the

new Poincare exponents must be negative. Eq (4.44) can be

used to calculate km after values for kl,k 2 . . . ,k M _ 1 have

been specified. However, since only the sum of the roots is

negative and not the individual values, stability is not

assured. A numerical search procedure is of possible use

here, but attempting to find m different values for the

individual components of the gain matrix is quite difficult

for multiple modes. Consequently, scalar control is

difficult to apply to systems with more than two unstable

modes. In this situation, vector control may be an

alternative solution to controlling the system.

Vector Control

As shown in the previous section, scalar control can

eliminate a system's instabilities. Now, suppose the control

u(W) has more than one dimension. Consider again the case of

a fourth order system (blade flap-lag motion) with 73 and 7)4

being the unstable modes. Restricting the control to these
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two modes yields

= = k 3 3  k34 1 3
W. [ k4 3  k 4 4 J 4 14.45)

Just as in the scalar case, the above expression for

u(w) can be substituted into Eq (4.20), and, since the stable

modes are left unchanged, the closed-loop equations for the

controlled modes are (43:63;62:674-875)

-(W) k3 3 93 3 +k 4 3 93 4 +
3  k3 4 93 3 +k 4 4 93 4 +

3

,' " 1) = ] c 1 .0
c k 3 3 94 3+k 4 3 94 4 + 4  k3 4 94 3 +k 4 4 94 4 + 4 c

where the gain elements k4 .(w) are all functions of w and the

controllability matrix, g(w), is periodic.

The two oscillatory modes in Eq (4.46) can be

transformed into a pair of uncoupled, purely damped modes by

decoupling the two modes in question. This requires that

k3 3 (W)g 4 3 1W) + k4 3 (W)g 4 4(W) =- 3()P.

k3 4 (W)g 3 3 
(W) + k4 4 

(W)g 3 4 (W) = -4 ()

The desired value of the real parts of the Poincare

exponents, %3, can now be chosen, and the diagonal terms in

Eq (4.46) can be forced to assume these values. This results

in two more equations:

k3 3 1w g3 3 1w) + k4 3 1wlg 3 4(w) = -

(4.48)

(€-  k3 4 (w g4 3 ( ) k4 4 1w g4 4 1w) = r4 -4
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Thus. Eqs (4.47) and (4.48) constitute four equations

* with four unknowns--the elements of the matrix k(y). Since

the values of the matrix g(W) may be calculated at evenly

spaced intervals throughout the entire period, a harmonic

analysis algorithm may be generated, and a Fourier series

representation of the elements of k(w) can be obtained.

However, the controllability condition

1 3 3 (W1g 4 4 (i - g3 4 (Wlg 4 3 (W) I 0 (4.49)

must be satisfied at any point in the period, or infinite

Cvalues of k(w) will be generated (62:675).

If k(w) is infinite at any point, the gain functions

k. (W) cannot be used to explicitly decouple the system. On

* thp other hand, these functions can be chosen to obtain the

largest possible shift in the Poincare exponents while

minimizing the required control forces (43:60).

* To accomplish this, assume k3 4 (W) and k 4 3 (w) are zero

and then apply the trace rule to Eq (4.46). The result is an

equation similar to the scalar control equation [Eq (4.36)]:

V = [k3 3 
(W) g 3 3 

(W) k4 4 
(W) g4 4 

(W) (4.50)

where the bracketed terms are the constant parts of the

Fourier series expansion of the product k(w)g(W). Now, the

exponential Fourier series for both k3 3 (W) and k4 4 (W) may be

written as (63:00-62)
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-K'I

= K k~etW (4.51)

where the constant K will be chosen later. The integral

expression for the coefficients k can be expanded to be

2rn

k = ic (W) [cos(IW) - inl(IW) dW (4.52)
• m" 0

* Hence.

k =k = - k s  ; ( + (4.53)

The Fourier expansion for either g 3 3 (W) or g 4 4(W) can be

similarly stated to be

o(1) = (ge (4.54)

M.4 ,= - O

where

go ; = 'g 5 ) ; g_,, = ig) (4.55)
o0

The product K(W)o(W) can then be written as

IKI

Now, let = -e , yielding the constant term

coefficient

"1

[sc,)c) WO KI keg _. (4.57)
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If. for the minimum control condition, the sum of the

* squares of the coefficients k and k are constrained to be

unity, then

(kI+ k a + k 1 (4.58)

-O Z= 2 00

Maximizing the constant term 1)wW] while

minimizing the control (w) can be viewed as an optimization

problem, where the Lagrangian, L, can be expressed as (85:55)

L= keg_ + X[2 ktk_ + k 0(4.59)

with X, being the Lagrangian multiplier.

* Applying the necessary condition for stationarity

.~, results in

S= j -t + kk + Xk = 0 (4.60)

-p0

or, for j 0,

0 0  (4X1

and, for J P1 0,

_k (4.62)

Substituting Eqs (4.61) and (4.62) into the constraint

(. yields
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= + + 2 O ./2 (4.63)
1=l

If D is defined to be D = 2X , then

D= g + 2 2+ gj2 (4.64)
O o t= I

and the coefficients of '(W) become

k 1  k =-g k -2 (4.65)
0 09 c 69 9 0

The constant term I(w)a(w)0 is then

(W) g 2 o+ 00 (g2 + g] (466
0o

The parameter K is still available for pole placement.*

Consequently, if the Fourier coefficients for g3 3 (w) and

944( )are g3 ct, g3 g and g4c', g4 g., respectively, then Eq

* (4.50) becomes

K 33 + 00 2 2
D3 3 = 3 c 193 c 3 n9]

+ 0 2 + g 2 (4.67)
D 44 g4c ° 0 (4c Z 4z

1=l

Choosing K3 3 and K44 so the new Poincare exponents are

placed in their desired locations requires a numercial search

procedure similar to that used with scalar control. In other

words, a value for K33 may be chosen, and then the following
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equations can be used to find K44

K K33[g + 3a 2
-D T + D 3 + (9 c1 38

K44 44

K44 44 33' OD [ 0c 1= (- (4.68)

[9:2 + 2 + g9)]

40 1

Once K33 and K44 have been calculated, the resulting

optimal gain functions, k 33(W) and k 44(w), maximize the shift

in the Poincare exponents with the smallest possible control

u(w), where

r 33 ()() 1
u(I) I x(W) (4.69)

k 4 4 1)f 4
1()

Consequently, a vector controller can be designed as

follows, with steps (1) through (3) being identical to those

steps used in the scalar control case:

4) determine the gain matrix k(W), either by solving

four linear equations with four unknowns, or, if the

controllability condition is violated, by

a) choosing a value for K 3 3

b) using Eq (4.68) to solve for the constant K4 4

c) calculating the optimal gain functions k 33(W)

and k 44(W) with Eqs (4.64) and (4.65)

5) calculate the control required in terms of the

physical coordinates u(W) and x(w) and insert it into

the feedback control system of Eq (4.17)

6) verify the root shift by integrating the
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controlled system's state transition matrix for one

period and obtaining the new Poincare exponents.

Iterate to obtain the desired Poincare exponents.

Following the above procedure will result in developing

*, a vector controller which will shift two unstable Poincare

exponents while leaving the others unaltered. However. it

may be necessary to stabilize more than two modes in a

.system. Again consider using the modal control technique to

stabilize a system, such as the coupled rotor/fuselage

system, with more than two unstable modes. Unfortunately the

same situation which occurs with the scalar controller also

arises when the vector controller is used. That is, it

becomes extremely difficult to determine the correct gains

required to shift more than two unstable modes to their

desired locations.

To summarize, both scalar and vector controllers have

been developed to shift two unstable modes into the stable

region. It appears, though, that the only way to shift more

than two modes is by guessing the values of the individual

terms in the gain matrix. However, another possible solution

S is to apply the modal control technique to shift a single

pair of unstable roots and then, using that controlled

system, design a control which shifts two other unstable

I, roots. This type of control could then be used to stabilize

any number of modes. All that remains is to verify these

observations by attempting to control a system of equations

of motion.
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V. Results from Controlling Blade Flap-Lag Motion

Chapter IV outlined the procedure used t3 develop modal

control theory. The results of this theory can now be

implemented in a controller to reduce or eliminate a

helicopter blade's unstable regions.

The first step in constructing a controller is to choose

the control system. Calico and March (42) applied the time

periodic modal control technique to the problem of

controlling the flapping instabilities of a helicopter blade

using a flap torque actuator situated at the blade root.

Calico and Wiesel (43) designed a time periodic modal control

system which used existing collective and cyclic pitch

mechanisms on a conventional swashplate. Stabilizing

helicopter blades with this type of active control could

possibly eliminate the need for mechanical lead-lag dampers

and expand a helicopter's operating envelope (31:13-14). It

remains to be seen what computational difficulties arise when

the modal control technique, as implemented by Calico and

Wiesel, is used to control more complex systems, such as

those described in Chapters II and III. Therefore, this

technique will first be used to control the flap-lag motion

of a single rotor blade.

The control vector u(W) for the control of a helicopter

blade's motion typically has components which represent

collective pitch, eo, and cyclic pitch, ec , es:
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Ae

0u C) (5.1)

The control matrix B(V) is then composed of periodic

pitch control functions me(w):

0 0 0

0 0 0
B(W) = me (W) me (w) me (') (5.2)

30 3c 3s
me (w) me cv,) me (W)

40 4c 4s

where
E"

(W) €,, ,oOo ["u'inwr -.(-3 b X -O
3o .o. -,~., o

" ~ ~ ~ +CB 2:[ ,o.oP,,] o]-o [ [.t?. .-+1 1 -0(3 1
4(' + =: 1+11)+'io

1 2

(W) = r ic osV ( 1+(?4 M -)

mec3s 0 IC r-3(<0 1 +j{~ 0(+3 0)*(

+ i sinw 1-0oo- /o' C1 ({o 0"K~o ]- K _2, +a] cosy

Conv') = _+_[? [s+vto " +4 o+3o 01)
coe 1 0 00C

..°o..0 [ ('1 3}. -,.. .no}n -] [,(5.oo-)

1 2 32 r + .({+C +C 0+{ - }

4( 0l 0 0 0+., 0. 2 1o+C)+*4
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2

+~~~ 20 +(3 coiW -
34 0 0l~~~~+otoo)E o,~o)

The above expressions are generated by extracting the

collective and cyclic pitch terms from the generalized

-aerodynamic forces of Eqs (2.72) and (2.73). Terms second

order and higher are neglected.

Results Using Scalar Control

For scalar control, u(w) can come from either the

collective, cyclic cosine, or cyclic nine pitch controls.

OP Designing a scalar control system requires determining the

gain matrix, k(w). needed to move the unstable modes to their

-. desired locations. To obtain the gains, Eq (4.36) must be

6solved. The modal controllability matrix is given by

C-2

3J 4J
I e(W)f -1 -1 (+

g' .(W) 3J - J - (5.4)

me e(W)f 3(W) + ne(W"f3 4(W)
3j 4J1

me(W)f4  ~~ + m()f4
3j 4(W 4J1
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where j = o, c, or s for collective, cyclic cosine, or cyclic

nine pitch control, respectively. The elements of gj(w) can

be written in a Fourier series form using harmonic analysis.

The gains k3 and k4 can then be calculated by one of the

W three methods described in Chapter IV.

These gains can be used in Eq (4.42) to determine the

control required to shift the roots to their desired

* locations. Once this control is inserted into the system,

the Floquet solution confirms the new Poincare exponents.

To demonstrate the modal control technique, five

different scalar controllers are designed to stabilize a

point in the unstable region at u = 0.40 (Figure 9). This

design point is defined by p = 1.15 and w = 1.40. With =

(( = 0.000, the real parts of the uncontrolled Poincare

exponents are 3,4 = 0.00189894. The real parts of the

desired pole locations are chosen to be 3,4 = -0.025. The

five scalar controllers are as follows:

1) collective pitch, using the constant terms of the

Fourier series expansion of g(w) corresponding to the

unstable modes, denoted as g3o and g4o

2) cyclic cosine pitch, using the constant terms of

g(w), denoted as c3o and c4o

3) cyclic sine pitch, again using the constant terms

as described in the first controller and denoted as

93o and s4o

( 4) collective constant/cosine pitch, using the
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constant term of the Fourier expansion of g(W)

corresponding to the first unstable mode (g3 0 ) and the

coefficient of the first cosine term in the Fourier

series expansion of g(w) corresponding to the second

unstable mode Q

5) collective constant/sine pitch, using the terms

described in the fourth controller, except g , the
41

O term corresponding to the second unstable mode, is the

coefficient of the first sine term of g(W).

The values for k 3 and k4 are calculated by using all

three methods described in Chapter IV. The first and third

methods of choosing the gains require iteration procedures to

find values for k and k4 such that the control succeeds in

9 shifting the unstable roots to their desired locations. The

accuracies of the new pole locations, qhen compared to the

desired values. depend on how many iterations are used to

i Ofind the required gains. Only a few iterations are necessary

if a low degree of accuracy is desired. However, placing the

poles with increasing accuracy requires, in general, an

increasing number of iterations.

On the other hand, the second method requires only one

iteration to arrive at values of k and k and the accuracy

*3 49

of the resulting root locations is quite impressive. Four of

the five different controllers tested produce new Poincare

exponents accurate to at least four decimal places when

compared to their desired locations. This corresponds to a
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TABLE III

Controller Poincare Exponents, ( = 0.000)

S

TYPE OF GAIN VALUES COEFFICIENTS POINCARE
CONTROLLER FOR g (W) EXPONENTS

COLLECTIVE k 3=- 0.117589 g3 o= 0.228753 -0.025062
PITCHk k4= 1.008789 g4 o=-0.266650

CYCLIC k 3=-0 142515 C = 0.188744
COSINE k =3o =  -0.025000
PITCH k4= 0.141415 c4o=-.190212

* CYCLIC k =-0.116426 s 3o= 0.231038 -0.024805
SINE 33PITCH k =-0.187789 s 4 = 0.143241

PTH4 4o_______

COLLECTIVE k 3=-0.117589 g3 o= 0.228753 -0.025010CONSTANT/COSINE-0000
PITCH k = 0.135280 g4 =-0.397678
PIC 4___ _ 4c_ _ 1

COLLECTIVE k 3=- 0.117589 g3 o= 0.228753 -0.024994
CONSTANT/SINE

PITCH k4=-0"173313 g4 5= 0.310409

99.75 percent accuracy. The fifth controller, cyclic nine

pitch control, produces results accurate to within 99.20

o percent of the desired pole locations. These results are

consistent for a wide variety of flight conditions tested.

As an example (refer to Table III), if the real parts of the

desired pole locations are 3,4= -0.025, the cyclic sine

pitch control yields Poincare exponents with real parts at

t.34 = -0.024805, whereas the other controllers produce

results better than 3,4= -0.025062. It should be noted

that, in all the results obtained, the stable modes are left

unchanged.

Now, each feedback controller developed is designed to
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stabilize a pair of Poincare exponents at a specific flight

condition. Similar controllers could be produced for any

flight condition. This, however, would require changing the

feedback control gains as the parameters are varied.

Therefore, it would be advantageous for a flight controller.

designed to control the system at a single point, to be able

to reduce or eliminate blade instabilities at off-design

conditions. However, it should be emphasized that no

guarantee of stability exists at equilibrium conditions other

than those the controller is designed for.

Consequently, the nominal design point for each of the

Efive scalar controllers is chosen to be at i = 0.40, with p -

1.15, w= 1.40, and C. = = 0.000. As before, the

controllers are designed to shift the real parts of the

unstable Poincare exponents to -34 -0.025. With each

controller set to shift the unstable roots at the chosen

design point, flight conditions are varied and new Poincare

exponents are generated.

Figure 18 illustrates the five flight controllers'

performances when, with the advance ratio held constant at

= 0.40, p and w are varied. Although convergence is not

guaranteed for off-design conditions, it can be seen from the

figures that, using this point design, each controller

eliminates the unstable regions over a wide range of p and W
C

combinations. In fact, two of the controllers--collective

constant/cosine and collective constant/sine--eliminate the

entire unstable region for $ = 0.40. The other three
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Figure 18. Stability Regions at p = 0.40

controllers--collective, cyclic sine, and cyclic

cosine--generate small bands of unstable regions near the

lower end of cW. The bands produced by the cyclic

controllers extend past p = 1.75 [Figure 18(a)], while the

collective pitch controller eliminates the unstable region

for p > 1.30 [Figure 18(b)]. Note that these bands of

unstable regions are much smaller in area than the

uncontrolled case. Indeed, the controllers, using this

single point design, significantly reduce the unstable region

for = 0.40. It should be mentioned that other point

designs were not examined in off-design conditions.

With the same five scalar controllers in place,

stability in hover is considered as a function of p and w
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Figure 19 compares the controlled and uncontrolled stability

boundaries for hover. Figure 19(a) shows that the collective

constant/cosine and constant/sine pitch controllers now

produce an unstable region extending past p = 1.75. This

narrow band is similar to the region generated by both the

cyclic controllers for the p = 0.40 case [Figure 18(a)].

Figure 19(b) illustrates the results of using the cyclic

cosine and cyclic sine pitch controllers. Once again, narrow

bands of unstable regions are generated, but the cyclic

cosine controller eliminates this unstable region for p >

1.245 and the cyclic sine controller eliminates the band for

p 2 1.285. It is interesting to note that these results are

similar to those obtained when the collective controller is

used at p = 0.40 [Figure 18(b)].

On the other hand, in hover the collective pitch

controller produces results very much different from those

,S previously summarized. With the first four controllers the

unstable regions are greatly diminished when compared to the

uncoupled case. But now Figure 19(c) shows that when the

collective controller, designed at M = 0.40, is used in

hover, a large unstable region is generated. In fact, this

region is larger than that generated by the uncontrolled

system.

Another way of observing how a point-designed controller

behaves in off-design cases is to hold p and w constant at

% 1.15 and 1.40, respectively, and vary the advance ratio from

S= 0.00 to p = 0.50. Figure 20 summarizes the results for a
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system with = = 0.000. An can be seen from the figure,

the uncontrolled blade is unstable throughout the entire

flight regime examined. Each controller, designed at p =

0.40 to shift the real parts of the unstable roots from t3,4

= 0.00189894 to 3,4 -0.025. accomplishes this task.

Further, four of the five controllers generate stable systems

from p = 0.00 through p = 0.50. As the advance ratio

increases, the cyclic sine and cosine pitch controllers

(Figure 20(a)] produce fairly constant, but increasingly

stable, values for the new Poincare exponents. The same

observations can be made for the collective constant/cosine

and constant/sine pitch controllers (Figure 20(b)], although

at lower advance ratios the new Poincare exponents are less

stable than those generated by the cyclic pitch controllers.

On the other hand, the collective pitch controller

[Figure 20(b)] produces results which differ from the other

four controllers. Even though the unstable roots are shifted

to their desired locations at p = 0.40, the controller

generates unstable modes below advance ratios of 0.06. In

fact, below p = 0.05, the controlled system is more unstable

than the uncontrolled system. Further, above p = 0.40 the

pair of complex conjugate Poincare exponents crosses the real

axis and splits off as two real roots, although they remain

stable.

It is also interesting to examine the effect of adding

passive damping to the system's lag hinge. To accomplish

this, (. is set to 0.001, and, for a design point of p = 1.15
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0.000

and w = 1.40 at p = 0.40, the uncontrolled system generates

a pair of unstable Poincare exponents with real parts at Z

= 0.000509462. Again, with the damping in place, the five

controllers are designed to shift the real parts of the

,a unstable roots to t3 = -0.025, and k 3 and k 4 are determined

gr using the second method of solution. As shown in Table IV,

each of the controllers generates new Poincare exponents

almost identical to the desired values. The cyclic sine

a, pitch controller is, once again, not as accurate as the other

a four controllers, but it still shifts the roots to within

99.24 percent of their desired values.

Now, using the above design point, each of the five
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TABLE IV

Controller Poincare Exponents = 0.001)

TYPE OF GAIN VALUES COEFFICIENTS POINCARI
CONTROLLER FOR g (w) EXPONENTS

COLLECTIVE k 3=- 0.109599 g3 0 = 0.232754 -0.024980
PITCHk

k4= 0.523310 g4 0=-0.048746

CYCLIC k 3=-0 .144719 c 3o= 0.176269 -0.024999
COSINE 3CIN k = 0.119706 c =-0.213101
PITCH 4 4o

CYCLIC k 3=-0.101668 3= 0.250909 -0.024810
SINE 3PITCH k4 =-0.202978 94o= 0.125676

COLLECTIVE k 3=- 0.0599 g3 o= 0.232754 -0.024995
CONSTANT/COSINE k

PITCH 4= 0.115905 g4 c=-0.440178

COLLECTIVE k =-0.109599 g3 o= 0.232754 -0.025005
CONSTANT/SINE

PITCH k4=-0.183796 g4 s= 0.277584

controllers is evaluated at off-design conditions; for this

cage, at varying values of the advance ratio. These results

Oare tabulated in Figure 21 and compared to the uncontrolled

system. With C = 0.001, the uncontrolled system generates

stable Poincare exponents for p 5 0.175. Above this point,

however, the uncontrolled system generates unstable modes.

The controllers produce results and trends almost identical

to the case where C = 0.000. Moreover, even the collective

pitch controller generates stable modes throughout the

spectrum of flight conditions examined. But, below p = 0.20

the Poincare exponents are not as stable as the uncontrolled

system, and the collective pitch controller generates complex

132

5S~~~~~14 
V*' 

% ~ * .* * . 1 . . ' ~ .~~%



UNSTAB3LE UNSTA3LE

-0.20-
-0.25 STABLE

ST"ABLE \
* o a0 UNCONTR0UED V'TEU

Z - UNCONTROL Z 5YSTM x -0.70 - - COLLETNE CONTROL
-.CYCLIC COSINE CONTROL - COLLECTE/OSNE CONTROL

.-0.75 --- CYCLIC SINE CONTROL .. COL.EgCVE/SiNE CONTROL
o o

* -. 2 -12 " -..

. 70

M -2.20

DESIGNPO
- - -" --- 27

.... .... .... .... ....---- --- -- --- -- -- -- - - , --... ....-
DESi- N POINTP\

0 I50C 0.0 0.00 0.50A ,VANE RATIO ,A.VANCE RATIO
(a) (b)
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0.001

* conjugate pairs of stable Poincare exponents through p =

0.50.

The transient responses of the system resulting from an

* initial disturbance can be determined assuming unit initial

values for each of the four states, (, , , and A A

collective pitch controller, designed at M = 0.40, with =

C 0.001, p = 1.15, and = 1.40, is used. Figure 22

illustrates the transient responses after ten periods.

Figure 22 (a) indicates that both the uncontrolled and

controlled responses of [3 to a step input are similar. The

responses damp out rapidly in a periodic manner. An for the

lag modes' responses, Figure 22(b) shown that the

uncontrolled system produces a very slightly unstable
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response while the controlled system damps out the transients

fairly quickly. Figure 22(c) plots the magnitude of the4,
control response as a function of the azimuth angle, and

shows that the required control is decreasing. It should be

noted that if a rotor's nominal rotation rate is 730

revolutions per minute, a blade completes ten revolutions in

0.822 seconds. Thus, the scalar collective pitch controller

stabilizes the system in a very short period of time.

To verify the above observations, the other four

controllers can also be used to stabilize the system at the

same design point for ten periods, and the flap, lag, and

control transient responses recorded. The responses of each

controller are all very similar. Figure 23 shown the

transient responses for the flap and lag modes after ten

periods for two of the controllers--collective constant/sine

pitch and cyclic cosine pitch. As can be seen by comparing

these figures with the responses generated by the collective
S

pitch controller (Figure 22), the controllers do not

significantly alter the stable roots' responses (i.e., ).

but they effectively stabilize the lag modes' responses in a

short period of time.

Figure 24 compares the control required during ten of

the blade's revolutions for three of the controllers:

collective; collective constant/sine; and cyclic cosine.

Clearly, the required control dramatically decreases as the

number of revolutions increases.

It should be noted that the trends shown by the
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lq collective constant/cosine and cyclic nine pitch controllers

.'- mirror those recorded by the collective constant/nine and

cyclic cosine controllers, respectively. In addition, the

1)trends observed are repeated when in1 changed from 0.001 to

0.000. Therefore, each of the five scalar controllers

iustabilizes the blade flap-lag otion.

.C The above results clearly demonstrate the success of

controlling blade flap-lag notion uing scalar controll The

next step is to see if a vector controller can be an

effective.
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Results Using Vector Control

A vector controller can be designed in much the same

manner as a scalar controller. However, in this case the

multiple elements of the control vector, u(), will be used.

For the current study, both cyclic sine and cyclic cosine

pitch control will be used. Hence.

u (W) = [9 ;) (5.5)

Again, determining the gain matrix k(w) requires

knowledge of the modal controllability matrix g(l). Eq

(4.24) shows this matrix to be

m3cf13 + e4 14 m3nf13 +m4sf14!# " I; " - I~' - i; " -'i
f. I + f-I + m fme 3c23 9 4 24 me3 23 9 4 24

g(W) (5.6) 3 4
me f- + m 9  f1 m f 1 + me f

3c 4c 3 3 33 4s

5-~f m +S* f-I m f
me 3  e 44 me f343 + e f44

Using the harmonic analysis technique, values for g. ,(;)

may be calculated at any given azimuth angle. If 7)3 and 7)4

are the unstable modes, only the last two rows of the g(W)

matrix are of interest. Given that the controllability

condition is satisfied throughout the period, the four linear

equations described in Eqs (4.47) and (4.48) can be solved at

evenly spaced intervals to obtain the Fourier series

expansions for the four components of the gain matrix k1w1.

'. 1 3R
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With (= = 0.000, a design point of p = 1.15 and (

= 1.40 at p = 0.40 is chosen. As can be seen from Figure 9,

thin point in in the unstable region, and the real parts of

the unstable Poincare exponents are t3.4 = 0.001898936. The

real parts of the desired pole locations are again chosen to

be t3,4 = -0.025.

In calculating the gain matrix, k(W), it was discovered

that the controllability condition is violated twice in the

interval between 0 and 2n. Hence, infinite values of k(W)

are obtained, and the vector controller fails for this

situation. It should be noted that Calico and Wiesel (43:63)

documented similar behavior in the investigations of an

isolated rotor blade's flapping motion.

A second vector controller was designed so that the gain

matrix maximizes the constant terms in Eq (4.50). The

Fourier expansion of the modal controllability matrix, g(w),

provides the Fourier coefficients needed to calculate the

elements of [k3 3 (W)g 3 3 (0)] 0 and Ek4 4 (W)g 4 4 (1)]o r as defined

in Eqs (4.64) through (4.66). The values for K33 and K 4 4

required to move the real parts of the unstable Poincare

exponents to t = -0.025 are obtained by varying K and

using Eq (4.68) to calculate K44. The Fourier coefficients

of g3 3 (w) and g4 4 (w) are again used to construct the Fourier

series representation of the gain matrix k(w), and, after

calculating K33 and K44' this matrix is used in the feedback

control system to move the new Poincare exponents to their

desired locations. With K33 = 0.21275545 and K =
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0.06116429. the real parts of the new Poincare exponents are

shifted to = -0.025000 when vector control is applied.

aAgain, all other modal frequencies are left unchanged.
The efficiency of the numerical search procedure used to

find the values for K and K depends upon the accuracy
33 44

desired. Obtaining results with a high degree of accuracy

requires a large number of iterations which, of course, can

be a time-consuming endeavor. Lowering the required accuracy

results in fewer iterations needed to obtain K33 and K44.
6 In this case, the results obtained using the vector

controller are much more accurate than those results obtained

with the five scalar controllers (refer to Table III), since

K and K are obtained after 14 iterations. However,

33 44

recall that the scalar control results were obtained without

performing any iterations. Chapter IV outlined a numerical

search procedure for scalar control where one gain is chosen

and the other calculated, with the process being iterated

until the results are satisfactory. With this procedure the

scalar controllers can be just as accurate as the vector

controller, if so desired.

The performance of the vector controller in off-design

cases is also considered. The design point is chosen to be

identical to the one used for the scalar controllers (p =

1.15, = 1.40, and = = 0.000 at p = 0.40), and, with

the advance ratio fixed at p = 0.40, p and Wr are varied.

For this case, the vector-controlled system produces stable

results with every possible p and w combination. If the
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same controller is used to generate results as p and w are

varied in hover, stable responses are again produced

throughout the flight regime. In other words, the vector

controller, designed for a single point, completely

stabilizes the system for all values of p and w in hover and

at p = 0.40. Comparing these results to those generated by

the scalar controllers (Figures 18 and 19), leads to the

N- conclusion that the vector controller eliminates a wider

range of unstable p verses w regions than any of the scalar

controllers.

The vector controller's performance can also be

evaluated by varying the rotor blade's advance ratio. Thus,

with the values for p and wC fixed at the design point (p

1.15, = 1.40, = 0.000, with p = 0.40), the advance

ratio is varied from p = 0.00 to ) = 0.50. Figure 25(a)

* shows that the vector controller generates stable modes

throughout the flight regime inspected. Just as with the

scalar controllers, the vector controller produces modes

which become more stable as the advance ratio increases.

With = 0.001, results, similar to those summarized

above, are obtained. For K = 0.21855978 and K
33 44

0.04988617, the vector controller produces roots with real

components at -0.025000. In other words, the desired

root shift is achieved, and the stable roots are unaltered.

With the design point set at p =1.15 and W = 1.40 for pi

0.40. the advance ratio is varied from p = 0.00 to M = 0.50.

IThe results, shown in Figure 25(b), are almost identical to
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Figure 25. Controlled Lag Modes as a Function of M

the case where =0.000. The controller generates stable

modes throughout the spectrum of flight conditions, and these

modes become more stable as the advance ratio increases.

Finally, the controlled system's transient responses are

generated for ten periods. Once again, the design parameters

are as follows: p = 1.15; = 1.40; p = 0.40; and =

0.001. Figure 26(a) is the flap modes' responses after ten

periods, while Figure 26(b) shows the lag modes' responses

after ten periods. Both curves are similar to those

generated when the five scalar controllers are used. The

trends show that the stable flap responses are not

E significantly altered, and the vector controller stabilizes
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the lag modes' responses, rapidly damping out any transients.

Finally, the physical control required by the vector

controller after ten periods is summarized in Figure 26(c).

It is interesting to compare the two figures summarizing

the required scalar and vector control, Figures 24 and 26(c).

The vector controller is designed to maximize the shift in

the unstable roots while minimizing the required control

forces. Indeed, as can be seen from the figures, the control
O

required by the vector controller is less than that needed by

the scalar controllers, though not significantly.

In the same vein, Figure 27 compares the magnitude of

the gain matrix, k(W), as a function of azimuth angle for

several of the controllers examined. Again, the collective

constant/cosine and cyclic sine pitch controllers mirror

their respective counterparts--collective constant/sine and

cyclic cosine controllers. The gains for the collective and

cyclic cosine pitch controllers are constants while the gains

for the collective constant/sine pitch and vector controllers

are periodic functions of the azimuth angle. This is to be

expected since, for the constant/sine controller, k 4 W) is a

function of the sine of the azimuth angle, according to Eq

(4.29), whereas the collective and cyclic cosine controllers

use constant gains. As for the vector controller, the gain

k(w) is calculated by a Fourier series expansion as a

function of W, and it. too, is periodic. Note that the gain

required by the collective pitch controller is greater than

any of the other controllers examined. This observation
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mirrors that found when examining Figure 24: the control

required by the collective controller is greater than that

needed by the other controllers. These observations should

be the same, since the required control is generated by the

gain k(w).

Finally, to insure that the observations summarized

above are not unique to a single design point or flight

condition, the scalar and vector controllers were designed

for a variety of desired pole locations and flight

conditions. In each case, the results and observations

mirrored those described above.

A.
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VI. Results from Controlling Coupled Rotor/Fuselage Motion

Chapter III presented and verified the equations of

motion for a coupled rotor/fuselage system. Without control

the uncoupled system generated unstable roots for both the

rigid body motions and the flapping motions of the individual

* blades on the main rotor. When coupling and reversed flow

were added, similar results were obtained. Consequently, to

successfully stabilize the coupled rotor/fuselage system two

I different types of control are required: one which

stabilizes the constant coefficient body modes; and a second

which stabilizes the periodic blade modes. Control of the

rigid body motion will be accomplished first.

Controlling The Airframe

Because the helicopter's airframe (including the

horizontal tail) is modeled as a constant coefficient system.

- standard feedback control may be used (50:357-384). Johnson

(2:794-800) examines three different feedback control systems

for a hovering helicopter with an articulated rotor:

It' longitudinal velocity feedback; pitch feedback; and lagged

pitch feedback. Further, he states,

In order to achieve stable flight, the longitudinal
dynamics of the hovering helicopter require feedback
control, either from the pilot or from an automatic
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control system (perhaps a mechanical system, often using

a gyro). The longitudinal velocity and pitch attitude
must be sensed and, after appropriate compensation, fed
back to the longitudinal cyclic pitch (2:794].

The pitch feedback control system Johnson examines is

adopted for the present analysis (2:796-798). The feedback

* used is either the helicopter's pitch attitude, pitch rate,

or a combination of both. Pitch attitude feedback can

stabilize, with positive gain, the oscillatory modes which

* result from the coupling of the pitch and the longitudinal

velocity. However, positive gain decreases the damping of

the real root representing the pitch mode. Pitch rate

feedback, also using positive gain, increases the real root

damping and increases the period and time to double amplitude

of the oscillatory roots. Unfortunately, this oscillatory

* response remains unstable. Johnson suggests using a

combination of pitch attitude feedback, which stabilizes the

oscillatory roots, and pitch rate feedback to keep the pitch

*O damping high.

Consequently, the pitch feedback to the main rotor's

longitudinal cyclic pitch can be described as follows

(2:797):

e = -Ki8 + 1 (6.1)

44 where the gain K is positive. The lead T must be large

enough so that the zero is to the right of the open loop pole

(which, in hover, is principally due to the main rotor's

IC~
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pitch damping). Otherwise, the damping of the real root will

decrease with positive gain (2:798).

Another type of control system uses the elevator.

Though ineffective at low speeds, deflecting the elevator

through an angle 6 e produces increments in both the C and CLom L

of the airframe, which helps maintain helicopter stability

throughout the flight envelope (50:28).

A control system utilizing the elevator control surfaces

as well as pitch feedback control to the main rotor's

longitudinal cyclic pitch can be designed specifically for

the coupled rotor/fuselage system. A pitch feedback control

system will first be designed for the helicopter's uncoupled

longitudinal dynamics and compared with Johnson's analysis.

For simplicity this control system will be referred to as a

pitch attitude feedback control system. Remember, though,

that pitch rate feedback is also used in conjunction with

pitch attitude feedback for control of the rigid body modes.

Since the pitch attitude feedback control system is

implemented using the main rotor's longitudinal cyclic pitch,

a control vector B1 can be generated by collecting the terms

which explicitly use e in the airframe's uncoupled
5

perturbation equations [Eqs (3.50), (3.51), and (3.53)]:
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i* Letting K, = K and K . = TK . a closed-loop feedback

control system of the form

x (W) = [A() + B 1x(W) (6.3)

can be generated such that

0'0 0 0 b -K bioo-KobI
S1

o o -K b -K .b(
B = 2 204

0 0 0 0

* 0 0 -K b -K #b

Setting T = 100.0, the longitudinal dynamics of the

uncoupled airframe in hover can be generated for various

gains. Figure 28 shows the root loci for the pitch attitude

feedback control to the longitudinal cyclic for both positive

and negative gains, and mirrors Johnson's results (2:797).

Clearly, increasing the gain not only stabilizes the

oscillatory hover roots, but also increases the real root's
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damping.

Pitch attitude feedback control can be added to the

uncoupled body modes to stabilize the helicopter in hover

and, then, with the control in place, the velocity can be

varied. Recall that, without any control, Figure 14 showed

that the unstable oscillatory modes became less unstable for

increasing velocities, although they never crossed over into

the stable region. In addition, the vertical and pitch roots

transformed into stable oscillatory modes. Figure 29 shows

the results of letting K = 0.60 and adding pitch attitude

feedback control to the uncoupled system in hover. In hover,

the modes representing the coupling between the helicopter's

pitch and longitudinal velocity are indeed stabilized. In

addition, the pitch root is significantly more stable with
6

feedback control. However, as the velocity increases, the

oscillatory modes become unstable and eventually become two

real modes, one becoming more unstable and the other
6

approaching the stable region. The vertical and pitch

motions remain as real, but stable roots with increases in

the speed.

It appears that pitch attitude feedback control is

effective in limited off-design cases. Achieving stable

flight throughout the flight envelope requires a stability
w

augmentation system which adjusts the pitch feedback at

various speeds. At higher speeds the elevator can be

deflected to help maintain stable flight. In this case, the
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Figure 29. Uncoupled Body Modes with Pitch Attitude Feedback
Control; No Reversed Flow

'"

control is 6e and the control vector, BI, is as follows:

0

PV p 2 S C (2MR 02]
T6 e

B = (6.5)
0

-PV 2SCL zac+3'X cot) -Sac 1/ (202 1]C
Of-, TLT 61 o ~

Using combinations of pitch attitude feedback through

the rotor's longitudinal cyclic pitch and elevator

adjustments, it is possible to generate stable roots for the

helicopter's uncoupled longitudinal dynamics through 300 m/s.
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For the remainder of this analysis, only the pitch attitude

feedback control system will be used; the elevator will not

be implemented for control.

Stabilization of the coupled rotor/fuselage system

requires modification of the feedback control system. The

elevator control matrix remains the same, but the matrix

defining the pitch attitude feedback control changes because

now the individual blades on the main rotor provide the

longitudinal cyclic input. Thus, for each of the rotor

blades, the pitch feedback vector BI is, without reversed

flow,

b -F(pcxp sa
M .15 op~ 0b -U ( p I CaoPsX )p

B i = 2 _ (PI5°-P2 ca) (6.6)
* b3 0

b4  rm(P3s+Plsz/Rm)

where, with i denoting the blade and varying from one through0

N,

pr i+J 2
p2g =-sW (pnswi+Asd g (6.7)

= .1+_!M 1 2 2 W

In the mixed flow region,
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-F (p ca +p ga)
1 m Is o2s o

b 2 + r m(Pl Bot -P.C o )
B (6.8)

0

Lb4 + fl (p 3 +p .tz/RM)

where

2 4
Pie PB Vi -3V.w

P2 - V s " (6.9)

S 1 4 4
P35  = -1 c 4 s P

Using Eq (6.6) as the control vector, integrating Eq

(6.3) over one period, and summing over the number of blades

*0 on the main rotor reduces Eq (6.6) to Eq (6.2). Likewise, a

root locus, obtained by adding pitch attitude feedback

control (Eqs (6.4) and (6.6)] to the coupled rotor/fuselage

*) system in hover and varying K, mirrors Figure 28. With T =

100.0 and K = 0.60, the pitch feedback control system

stabilizes the oscillatory modes while generating a much more

I' stable pitch root.

Using this control, the velocity is varied and the

results summarized in Figure 30. This figure shows that the

hover roots are the same as the hover roots of Figure 29.

However, now the pitch attitude feedback control system

stabilizes the body modes up to 122 m/s. Above this
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Control; Reversed Flow Added

velocity, onoi mode is slightly unstable. The other three

roots remain stable through 300 mO0. In addition, the pitch

and vertical modes become more stable as the velocity in

increased. Thug, applying pitch feedback control to the

coupled system in hover generates a wider range of stable

off-design airframe roots than the uncoupled case. Again.

changing the pitch attitude feedback control or adjusting the

flight evelope t hrough 300 m/s.

!Oaelevtrtsicontolesuefae etensa he airthrame's table

Clear. pitch attitude ffeedback control, using a

changinaton opitch attitude and pitch rate feedback, in
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beneficial to the airframe's coupled longitudinal dynamics.

Figures 31 and 32 show the variations in the main rotor

blades' flapping and lagging roots as the velocity increases.

In both cases the system includes the pitch attitude feedback

control designed for hover. Note that Figure 32 shows the

velocity root loci of the controlled flap modes. The general

trends of the controlled flap modes shown in Figures 31(a)

and 32 are similar to the uncontrolled roots summarized in

Figures 11(b) and 17. At low speeds two flap modes transform

from a pair of oscillatory roots to two real modes and back

to a pair of oscillatory roots. Two more roots are real, but

stable, at speeds above 79 m/s while the other four flap

modes generate stable oscillations through 300 m/s. Note

that, when pitch attitude feedback control is applied to the

coupled rotor/fuselage system, all of the flap modes remain

stable through 300 m/s.

Figure 51(b) shows the lag modes of the four blades when

pitch attitude feedback control is added to the coupled

rotor/fuselage system. Once again, the magnitudes of the

imaginary parts of the lag modes are approximately 0.500 from

hover through 300 m/s, so velocity root loci of these modes

are not plotted. A comparison between Figure 31(b) and the

plot of the real parts of the uncontrolled lag modes as a

function of velocity (Figure 12(b)] indicates that, at low

speeds, the modes are similar. With control added to the

system, all eight lag modes are stable through 300 m/s.
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Three pairs of lag modes are nearly identical when compared

to the corresponding uncontrolled modes; the fourth pair's

roots are much more stable.

The above discussions indicate that pitch attitude

feedback control applied to the coupled rotor fuselage system

in hover does not significantly alter the individual blade

flapping and lagging motions, except at high speeds where

there are stabilizing effects on the two previously unstable

flap modes. As for the airframe's modes, the pitch attitude

feedback control system stabilizes the oscillatory roots not

only in hover but also for a fairly wide range of off-design

cases (i.e., different velocities). Further, one of the

modes, after it crosses into the unstable region, remains

only slightly unstable, even at very high velocities.

Finally, pitch feedback has a stabilizing effect on the pitch

root as the velocity increases.

For the coupled rotor/fuselage system, the net result of

designing pitch attitude feedback control through the main

rotor's longitudinal cyclic pitch for hover is that only one

body mode goes unstable as the velocity is increased through

300 m/s. As was mentioned earlier, this mode can be

stabilized either by using pitch attitude feedback control or

by adjusting the elevator. Consequently, the helicopter can

achieve stable flight using standard feedback control

mechanisms even at very high speeds.

Note that, with this particular helicopter
q(.
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configuration, the blades' periodic flapping and lagging

motions are stable throughout the flight envelope inspected.

It is quite possible that different helicopter configurations

can generate unstable flap or lag modes with variations in

the helicopter's forward velocity. It is desirable to alter
S

the helicopter's parameters in order to produce unstable

responses in either the flap or lag modes, and then control

those modes using the modal control technique.

Therefore, for case ii, R = 8.00, c = 0.300, and w3 =i:. m m

0.10. This results in unstable lag modes from hover through

16 m/s for the uncoupled rotor blades. Figure 33(a) shows

that, above this speed, all eight lag modes are stable. A

plot of the real parts of the uncoupled flap modes as a
a,

function of helicopter speed, shown in Figure 34(a),

indicates that each of the four pairs of flap roots produce

stable oscillations at lower speeds. As the velocity

increases, though, real roots are generated and four of these

roots are unstable at high speeds.

Adding reversed flow to the uncoupled blades' equations

of motion does not alter the lag modes except at high speeds;

the modes are more stable when reversed flow is included

[refer to Figure 33(a)]. Figure 34(a) shows that adding

reversed flow stabilizes the uncoupled flap modes at higher

velocities. Note that these results mirror those obtained

using the original rotor parameters.

Figure 35 shows the uncoupled body modes (without
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reversed flow being included) for case ii. Figure 35(a) is a

velocity root locus of the modes while Figure 35(b) plots the

real parts of the body modes as a function of velocity.

Because the airframe's equations are normalized with respect

to R and 0 . changing either of these two parameters alters
m

the uncoupled body roots.

The coupled body modes (with reversed flow added to the

system) can also be generated for case ii, as shown in Figure

36. Note again that the coupling terms do alter the modes

with increases in speed when compared to the uncoupled modes

(Figure 35). The four blades' coupled flap modes are also

changed with case ii. Comparing Figures 11(b) and 34(b)

reveals that the magnitudes of the real parts of the Poincare

exponents are smaller in case ii. In addition, one pair of

flap modes is unstable at very high speeds. Figure 37 shows

the velocity root loci of the four pairs of coupled flap

modes for case ii. The dashed and solid lines in the figure

indicates corresponding pairs of roots.

Finally, Figure 33(b) shows that, for case ii, three

pairs of the coupled lag modes are unstable at velocities up

to approximately 186 m/s. Note &lso that, at very high

speeds, a pair of lag modes is unstable. It is interesting

to compare these results to the uncoupled lag modes generated

Ifor case ii [Figure 33(a)]. It appears that coupling the

airframe longitudinal dynamics to the blades' lag modes is

destabilizing. It should be noted that the imaginary part of
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each of the lag modes hag a magnitude of about 0.1I00 fr"om

hover through 300 m/g.

jo For cage ii, pitch attitude feedback control can be

~designed, in hover, to control the airframe' s unstable

oscillatory roots. With T = 100.0 and K = 0.60, the coupled

, rotor/fuselage sytem's roots are shown in Figures 38 through

~40 as functions of velocity. Figure 38 indicates that, for

case ii. pitch attitude feedback control stabilizes the

0 coupled airframe's oscillatory roots through 300 a/g. The

root representing the hel icopter' s pitch notion does.

however, become unstable at speeds above 175 m/g. Figures
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39(a) and 40 show all eight flap modes to be stable through

300 m/s when pitch attitude feedback control to the main

* rotor's longitudinal cyclic pitch is added to the coupled

rotor/fuselage system. Note again that the dashed and solid

lines represent corresponding pairs of flap roots.

The coupled lag modes, shown in Figure 39(b), are

altered when pitch attitude feedback control is used.

Without any control [Figure 33(b)], six lag modes are

unstable up to 186 m/s, and the other two lag modes become

unstable at very high speeds. When control is applied to the

coupled rotor/fuselage system for case ii, six of the lag
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modes are unstable at speeds as high as 218 m/s. However,

the two remaining modes are now stable throughout the flight

regime inspected.

Thug, for cane ii, six unstable lag modes exist after

pitch attitude feedback control is added to the coupled

rotor/fugelage system. The modal control technique can now

be used to control these unstable modes.

Controlling The Blades

First, however, a control system which uses the modal

C
control technique must be developed. As was the case in

controlling an isolated blade's flap-lag motion, the

controller chosen for the coupled rotor/fuselage system uses

a conventional swashplate mechan'sm:

e[0
U(W) = c 6.10)

@e s

The control matrix B(W) is generated by extracting the

collective and cyclic pitch terms from the A(W) matrix found

in Eq (3.101):
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0 A+1 0 A+1 0+ 1

O4+2 O4+2 O + 2

b A+3,1 bA+3,2 bA+3,3

B(w)= bA+4,1 bA+4,2 bA+4.3 (8.11)
b b+1,1 bi+1,2 b.+1,3

b, b+2,1 b4+2,2 b#+2,3

b 0 0 0

+4, 1 4+4,2 b+4,3

where A = 4(i - 1), i steps from 1 through N, and j 4xN.

* Incorporating the B(w) matrix terms derived for an isolated

U blade in normal flow [Eqs (5.2) and (5.3)],

b +3,1 =  me(w) + ell

b +3,2 = me () +
3ce

b b+3,3 = me(f) + e1 3

b +. = me(w') + e2
4+4,1 4

b = me() + e 2

bA = me() + 23
4s

b0+.l= -F (Pllco+ P 2 1 gso]

j+1,2 = - P2Co+ P2 2 so)(6.12)

b# 1 ,3  , (pl3 co+ P2 3 scA

= 4 mFPlls - P 2 1c1]

b 4+2.2= m(PI 2s
o - P 2 2c"o

Sb+2 3 = m(P 1 3  -P23"o

Sj+4'1= m(P31 + 1pl/R]

1.
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#+, mnI32 +4ZP12/RM)

09 b +4,3 ri= nII33 + p 1 3 /R]M

where

12_1

p13 q ~{X + ( - 1}cW.--6Xt3.+p3+3}sW.

-1 (( 0 +1] +1 2)x2]X(2]

0' =P 4 (-(.

p22  2

3= 2 -~

p3 = W (.

P [cW~-~~1o S) -3-:"} T~1+(-3 (6. 13)

p 3 3  21J=(' :
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11l m[lt3 ("co+cco)+( 4" iI'yp-kgocwll){co- Ao12 1
U=

12 i 21{(w o) (Soto o)+!(P~cW.-X~) (ccl-sa)}

I-1 3
e 1 3 = i In 0j 1 ) + [! J acj3 .o-Sco)J

=~' ir y LcJ

e 221 -rm t i (SaG+ao - 3 oe U'sOWJ LCoo- got)
1 r Jr

e 2 3 = -irmf(4 3 i J 1's C[+ 1 t 3 1 cEW- sa1j

Note that t 3 and t 5 were defined in Eq (3.71).

In reversed flow, the signs of the terms in Eq (6.12)

are reversed. In mixed flow these terms are altered such

that

I I

bA+31 m() + e 1 13o

bA+3.2 = me(w) + e2
3c

bA+33 w + e 1 3

3s

bA+4,1 = me(w) +
4o

b+4.2 m= me( +) e e
4c 22

bA+4,3 =  () +23
4g
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b _1-F{(P 1 1 +P 1 1)c'.+(p2 +p 2 )ct 0}

b = (6.14)

b +, -'F(P 1 3 *P'1 3 )%o+ (p2 3+p23)s 0 o

b+ 2 .1 = f{~pl+p 1 1 l)ga-(P 2 +P 2 )c'o}

b J+. fr(p 1 +p' 2 lac- (p2 2 +p22]ccl

b =,

4O. = f f{(p 3 2+P 3 2 +'z (Pl 2 +Pvz2)/}

b +43 r=m {(p3+P) +z(p 1 3 *P' 3 )/R.1

where

me =wi( IW) - -m-1 ,to

3o 3o 16H i

3c 3

me mew m(f) + ;''arj5~3JWjX3+P~
3s 3a

4o 4o

+ 30- 1) X23
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2 rL2

2

me (W) =m(Y/) + imY.[HX (5(30 -2) +5 2 1 t? B

+ -o23o (1-33) - l}cWi+ 13 gWi . 2_J

2 2

p I ). jgv'-wi~,J I43+t? 0 1 P 3 J (.5

13 = 0{z~s iW. 2~~ loo -~ )I~~-~

4X p2 rg= -3{0+1 2 -+)c

(33+ g.X10 w + 3 W4 )lX( 2I0

4'4

P' ~ ~ .',2 (?+1)ci



= ~+e 2?PsacJX co -sa c

e = e0 2++ - C -3 2 - % e.

12 12 48r [1 0N lad +caJ)+IP l 3 .+2J lc XdJ~w

- 0 {(s 0 +C 0 ) +X( o - ) }]

e3 = el3  r {18x ( +cot0) +P (2+lO) a -sa
m 90 00( 0 0)

e = e --r Ia

622 e2 27j-2r/3 1 Cd 0sd 0)

23 23 _.Oo(9
*Pe2 = e2 3 + -~, 1 '1 5d1o+Cco+nCoSa]4"[oCCoSoCi

The modal control technique uses the control matrix

8* defined in Eq (6.11) to control the unstable blade modes in

the coupled rotor/fuselage system. Scalar control is

examined first.

Determining the gain k() required to shift the real

parts of the unstable blade modes of a coupled roter/fuselage

system to their desired locations necessitates calculating

the modal controllability matrix, g(W). Recall that Eq (5.4)

described the g(w) matrix used in controlling an isolated

blade's unstable lag modes. If the helicopter is modeled
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'c

with a 4-bladed rotor. the control matrix, B(..). is of order

20 when scalar control in to be used. Since 8(w) =

-1F ()B(w) [Eq (4.24)], g(w) is also a 20xl vector. Each

row of a( ) (where Z denotes the row) can be expressed as

(W g 4 (w) = ft 3IBi+ ft B
+IB +I , 3 4 +4B4LAt 4 .

+ f B + f1 B *f B (6.16)

where i steps from 1 through N, j = 4xi , and A is the

desired controller: collective pitch; cyclic sine pitch; or

cyclic cosine pitch.

The scalar collective pitch controller is first

examined. Recall that, with pitch attitude feedback control

stabilizing the body modes in hover, the coupled body modes

remain stable through 175 m/s (Figure 38). The addition of

collective pitch control to the pitch attitude feedback

control signal in hover shifts the most unstable pair of lag

modes to their desired locations. The results are summarized

in Figures 41 through 43.

Figure 41 plots the eight roots representing the coupled

lag modes when both pitch attitude feedback and scalar

collective pitch controls are applied to the coupled

rotor/fuselage system. Figure 41(a) shows the real parts of

the three coupled conjugate pairs of lag roots, while Figure

41(b) shows the pair of real roots. This figure may be

compared to Figure 39(b), which shows six lag modes to be

unstable at speeds up to 218 m/s when only pitch attitude
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Figure 41. Coupled Lag Modes an a Function of Velocity with
Controls; Case ii

feedback control in used to stabilize the helicopter's

coupled body modes. In hover and without any modal control,

* the two most unstable lag modes have Poincare exponents at

5. 19259x 10'4 ± 1.05750xl10% . The scalar collective pitch

controller is designed to shift theme modes so that the real

parts of the new Poincare exponents are at -0.001. Figure

41(a) shows this to be the case. In addition, the other

modes are unaltered. Thus. for the coupled rotor/fuselage

system, scalar collective pitch control functions as

predicted in Chapter IV.

However, when scalar collective pitch control in
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applied to an unstable pair of lag modes at a single design

-, point. the other three pairs of lag modes are significantly

altered in off-design cases. This is readily apparent when

comparing Figure 39(b) to Figure 41. The latter figure

indicates that the lag modes for which the control was

designed remains stable through 300 m/s. Another pair of

modes is stabilized at lower speeds; however, they are

unstable at higher speeds. A third pair of lag modes remains

unstable throughout most of the velocity regime inspected;

they are slightly stable at low speeds and at very high

speeds. The final pair of modes, shown in Figure 41(b),

splits off as two real Poincare exponents just above the

design point. One Poincare exponent becomes unstable as the

velocity increases while the other becomes more stable withU°
increasing velocity. Except for the two lag roots which

become real, the imaginary parts of the lag roots do not vary

much as the velocity is increased; hence, velocity root loci
0

are not plotted.

The collective pitch controller, when designed to

stabilize a pair of lag modes in hover, also alters the flap

modes in off-design cases, as shown in Figure 42. Note that

Figure 42(a) is a plot of the real parts of the flap modes as

a function of velocity while Figures 42(b) and 42(c) plot the

magnitudes of the imaginary parts of the flap modes versus

velocity. Comparing these figures to Figures 39(a) and 40

indicates that although the flap modes are unaltered at the
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design point. they do change an the velocity increases.

Still, all four pairs of Poincare exponents remain stable

through 300 m/s. Note that one pair splits off as two real

roots at the upper end of the velocity spectrum.

Finally, Figure 43 shows the body modes as a function of

velocity when scalar collective pitch control is used to

stabilize two lag modes in hover. Figure 43(a) plots the

real parts of the body modes as the velocity is increased,

and Figure 43(b) plots the magnitude of the imaginary part of

the oscillatory body roots as a function of velocity. This

figure can also be compared to Figure 38, which shows the

body modes as a function of velocity when pitch feedback is

the only control applied to the system. It appears that the

body modes are altered when scalar control is used to control

one of the lag modes. The oscillatory roots shown in Figure

38 become more stable with increasing speeds; at higher

velocities the roots become real, but remain stable. On the

other hand, Figure 43 shows that, with scalar collective

pitch control added to the coupled rotor/fuselage system,

these two roots become less stable as the speed is increased.

The pitch root is not too different from the case where only

pitch feedback control is used. The vertical mode, though,

is different. With just pitch attitude feedback control this

mode becomes unstable at speeds above 175 m/s; when both

pitch attitude feedback control and collective pitch control

are applied to the system in hover, the vertical mode becomes
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Figure 43. Coupled Body Modes as a Function of Velocity with

Controls; Case ii

. more stable with increasing speed (see Figure 43). Thus,

modal control does influence the airframe's modes in

off-design cases.

* To confirm the observations sumarized above, various

design points and off-design cases were examined. In

addition, the other four scalar controllers, as well as the

" vector controller, were tested. In all cases, the general

trends previously observed were repeated. In other words,

modal control does shift the unstable modes to their desired

pole locations while leaving the other modes unaltered.

'S Further, the controlled modes are, in general, more stable

d than their uncontrolled counterparts in off-design cases.
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%- However, the modal controllers do influence the uncontrolled

modes in off-design cases. It must be emphasized, though,

that the modal control technique does not guarantee a

system's stability in off-design cases. Enhancing a system's

performance over a wide range of operating conditions while

using a scalar controller designed at a single point is a

bonus.

It remains to be demonstrated that the modal control

technique can be used to stablize more than two modes at one

time. Since six unstable lag modes are generated in case ii,

this question can be addressed.

0 Scalar collective pitch control of four unstable lag

modes was first attempted at various design points using the

scalar control to set the sum of the real parts of the four

modes. Unfortunately, gain values could not be found which

shifted all four lag modes to stable locations. The same

results were repeated when the other scalar and vector
0

controllers were used. Even though the trace rule is still

valid, finding the required values for the individual

components of the gain matrix is quite difficult once there

are more than two unstable modes to control.

On the other hand, it is possible to stabilize more than

two lag modes using the technique suggested in Chapter IV.

6 That is, a modal control system which uses either a scalar or

vector controller can be used to shift a pair of unstable lag

modes to their desired locations at a specific design point.
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The resulting closed loop system is a new linear system with

periodic coefficients. Hence, another modal controller can

be designed for this new system to shift a second pair of lag

modes to their desired locations. This process may be

repeated until all the instabilities are eliminated at the

design point.

The technique described above is used to control the six

unstable lag modes of the coupled rotor/fuselage system, and
O

the results summarized in Table V and VI. Again, a scalar

collective pitch controller is used to stabilize all six

unstable roots. The design point is chosen to be at hover,

and the real parts of the desired Poincare exponents are

chosen to be at -0.001. The Poincare exponents of the

uncontrolled system (in hover)are listed in the first column

of Table V in the following order: the first four pairs of

values represent the coupled lag roots (notice that three

pair are unstable); the next four pairs correspond to the

coupled flap roots; and the remaining four Poincare exponents

(two real, one pair of complex conjugate roots) represent the

coupled body roots.

The second column of Table V shows that a scalar

collective pitch controller does shift the first pair of

unstable lag modes to their desired locations, and the other

modes remain unaltered through six decimal places. Using

this controlled system, another scalar collective pitch

controller is designed to shift the second pair of unstable

%



TABLE V

Coupled Rotor/Fuselage Poincar. Exponents

UNCONTROLLED SYSTEM 1 CONTROLLER

5.192593e + 1.057496e'' -9.995077e± 3.220

(93.059946e- ± 1.057554e- i. 3.059855e- ± 1.057554e-

9.042715e,6±t 1.057538e -i. 9.057906e ±d 1.057536e'L1

-3.408090e- a± 1.091555e. IL -3.408137e-9± 1.091553,1l

-3.795581e + 2.099687e '. -3.795597e ±2 2.099653e- 2

-3.805239e -2±t 2.389089e -2 v -3.805223e 2±t 2.389114e -2

-3.808932e. ± 2.390504e. i -3.806912e.- ± 2.390474e. 2

-4.149921.- ± 2.555194e. 2L -4.149991e- ± 2.555188e. 2

-9 2 -9-2
-1.105481. 1.248439. -1.104960e t 1.248497e 1

-9.980934e- ;-6.220265e. -9.980960.- ;-6.220364e 2

2 CONTROLLERS 3 CONTROLLERS

-9.950731.'± 3.025793~ -1 -9.927525.-4± 3.025679.- I

0-1.004005e- ± 4.394548e. 2 -1.378458e. ± 6.525711.- 1.

9.234463e,6±t 1.057536e~ -1 -1.000030e -9± 1.264130.-2

-3.438676e- 9± 1.091954e -1 -3.438994e- a± 1.091939.11.

14 ~-3.802735e. ± 2.111320e -2 -3.801327e. ± 2.103759.- 2

-2 - 2 -2 -
-3.803062e ± 2.387222e 1. -3.804800e 2.389742e '

-3.807493e. ± 2.389073e. 2 -3.808628e. ± 2.389868e. 2

-4.168728e2 ± 2.557609e 2 4.158455e- 2 2.54493le-2

-5.531076e. ± 1.321861 le. 7.464530. t;-7.432865e.l

-1.000727e. ;-6.237134e- -9.979118.- ;-6.22442 le2
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Poincare exponents to -0.001. The third column in Table V

indicates that indeed this is the case. Unfortunately,

numerical inaccuracies can be noticed in the uncontrolled

Umodes. The roots representing the coupling between the

body's pitch and longitudinal velocity (the next to the last

pair of modes shown in the column) are different. In

addition, the other roots are accurate to only four or five

decimal places. The last column in Table V shows the results

of controlling the final pair of unstable Poincare exponents.

Again, the scalar collective pitch controller shifts the

unstable roots to their desired locations. This time,

however, the numerical inaccuracies are significant. The

roots representing the coupling between the body's pitch and

longitudinal velocity have now become real; in fact, one is

unstable. The other modes are accurate to only three or four

decimal places.

Table VI shows a comparison between the gains required

for each of the three scalar collective pitch controllers.

Notice that the gains are all on the same order of magnitude.

The results summarized in Table V indicate that the
E

technique used to control multiple blade instabilities is

valid. However, numerical inaccuracies are a factor when

generating the uncontrolled modes and become noticeable when

the modal control technique is used more than once at a

particular design point.

As a final note, the modal control technique can also be
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TABLE VI

Controller Gains

1 CONTROLLER 2 CONTROLLERS 3 CONTROLLERS

-20.1367 -20.1367 -20.1367

*9.8640 9.8640 9.6640

0.0000 25.9870 25.9870

0.0000 21.0596 21.0598

0.0000 0.0000 22.2350

0.0000 0.0000 5.4816

used to stabilize the main rotor's blades with individual

blade controllers. As Calico and Wiesel observed, any number

of unstable blade modes can be controlled with simple

* one-blade scalar controllers (43:64).

Therefore, since a combination of pitch attitude

feedback to the main rotor's longitudinal cyclic pitch and

* elevator deflections can be used to stabilize the body

modes, a coupled rotor/fuselage system with multiple

instabilities can be successfully controlled throughout a

wide range of flight conditions.
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VII. Conclusions

The flap-lag equations of motion of an isolated rotor

blade's flap-lag motion and those for a rigid helicopter

containing four blades free to flap and lag were derived. In

addition, control techniques were developed to stabilize both

systems for a variety of flight conditions. Some conclusions

concerning the results generated during this study are

summarized below.

Control of Blade Flap-Lag Motion

Modal control theory, implemented through the collective

and cyclic pitch control mechanisms, reduced or eliminated

blade flap-lag instabilities. The pole placement technique

accurately shifted unstable roots to their desired locations

while leaving the stable modes unaltered.

The five scalar controllers considered all shifted the

unstable roots to desired locations. When used at off-design

points one controller, using collective pitch, failed to

stabilize the blade over a wide range of p and w parameters

up to P = 0.06. The other scalar controllers reduced the

blade's unstable regions from hover through p = 0.50.

Similar results for the vector controller were obtained.

However, this controller eliminated the unstable regions in

the p versus w, parameter space for both hover and p = 0.40.
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In fact, the vector controller produced results which were

better than those generated by any of the scalar controllers.

V In summary. both the scalar and vector controllers

shifted the unstable roots to desired locations, and, using a

single design point, reduced or eliminated the unstable

regions of a blade's flap-lag motion throughout a wide

variety of flight conditions.

Control of Coupled Rotor/Fuselage Motion

Coupling the flap-lag equations of motion of four rotor

blades to a rigid airframe altered the flap, lag, and

airframe roots. A pitch attitude feedback controller, which

used a combination of pitch attitude and pitch rate feedback

to the rotor's longitudinal cyclic pitch, was designed to

stabilize the uncoupled body modes in hover. The same

feedback control mechanism also stabilized the body modes of

* the coupled rotor/fuselage system, not only at the design

point but also over a wide range of off-design velocities.

Although not specifically considered in this research

effort, stabilizing the rigid body modes throughout the

flight envelope can be accomplished by scheduling the gains

in the pitch attitude controller.

The coupled rotor/fuselage system was also used to

further analyze the modal control technique developed in

Chapter IV. Even though the system was of order 20, there

were no numerical difficulties in designing a modal
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controller to place a single pair of unstable roots. It was

shown that, at a specific design point, scalar and vector

control shifted a pair of unstable Poincare exponents to

C" desired locations without altering the other modes in the

system. In addition, the controllers, designed at a single

point, stabilized the controlled lag modes over a wide range

of off-design cases. However, the controllers altered the

other modes in off-design cases.

U, Finding gains which stabilized more than two roots

proved to be very difficult. However, the modal control

technique was used to eliminate multiple blade instabilities

4 by first controlling a pair of unstable roots at a specific

design point. The resulting closed loop system was a new

linear system with periodic coefficients. Another modal

controller was designed for this new system to shift a second

pair of unstable roots to desired locations. This process

was repeated until all instabilities were eliminated.

Numerical inaccuracies, unfortunately, became noticeable when

modal control was used more than once.

ft.
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*" 19.
h- The flap-lag equations of motion of an isolated rotor blade and those

*" for a rigid helicopter containing four blades free to flap and lag are derived.
Control techniques are developed which stabilize both systems for a variety
of flight conditions.

Floquet theory is used to investigate the stability of a rotor blade's
"- flap-lag motion. A modal control technique, based on Floquet theory, is used

to eliminate the blade's instabilities using collective and cyclic pitch
"- control mechanisms. The technique shifts the unstable roots to desired locations

while leaving the other roots unaltered. The control, developed for a single
design point, is shown to significantly reduce or eliminate regions of
flap-lag instabilities for a variety of off-design conditions. Both scalar
and vector control are successfully used to stabilize the blade's motion.

Coupling the flap-lag equations of motion of four rotor blades to a rigid
airframe alters the flap, lag, and airframe roots. The airframe roots are
stabilized using a combination of the body's pitch attitude and pitch rate
feedback to the main rotor's longitudinal cyclic pitch. The modal control
technique is used to eliminate multiple blade instabilities by first controlling
a pair of unstable roots at a specific design point. The resulting closed
loop system is a new linear system with periodic coefficients. Another modal
controller is designed for this new system to shift a second pair of unstable
roots to desired locations. This process is repeated until all instabilities
are eliminated. Numerical inaccuracies, however, become noticeable when modal

*control is used more than once.
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